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Classification of Partial Monitoring Games
PM games fall into four classes based on the minimax regret R (G)

Theoretical Analysis
Types of Regret Upper Bounds focus on the problem-dependent expected bound

Research Question
* Partial Monitoring (PM)

* General framework for online-decision making with limited feedback

[ trivial: R(G) = 0 ] locally

> observable

minimax bound problem-dependent bound
Consider the worst-case regret Vs Bound the regret

sup,« Reg(T, p*) w/ the function of p*

é Y

| easy: RA(G) = @(ﬁ) ) games

e

* Thompson Sampling (TS)

* One of the most promising policies, especially for bandit problems

The alg. minimizing problem-dependent bound often performs better.

?
hard: R(G) =03 | [ globally
_

= _J observable

* Handles the exploration/exploitation tradeoff by posterior sampling

loosen the bound
N/

high-probability bound 7< q
derive the upper bound, Vs.

which holds w.p. > 1 -6

( hopeless: R (G) = Q(T) ] games

bound E.[Reg(T, p*)]

e.g., The dp-hard game belongs to the hard class.

A variety of
Good performance online-decision making problems

Th S li ® multi-armed bandits
ompson Samp g ¢ linear bandits

Partial Monitoring game  * dynamic pricing
How to apply? ® |abel efficient prediction
Theoretically justifiable? . ..
Empirically good?

possible

Regret Upper Bound
Theorem (informal). For any PM game w/ (strong) local observability,

Using Thompson Sampling for PM

the expected pseudo-regret of TSPM-Gaussian is bounded by

i ; \
. 3 A, : sub-optimality gap for action i
A zie[N] A, \/ZN maX;eqy) A,  Jog T A = min Ay /2]
j

A2 ’ A2 (A, : loss gap between action j and &,
24 . :
L J ) zjx € R*" : vector relating loss and fb)

1. Calculate a posterior dist. for the target parameter (strategy p*)
-fi(p) == m(p| {i(s), y(s) }i=)) ﬂ(P)HiileXP <_”i9KL (%'(t)”Sip))

2.Sample the target parameter from the posterior distribution

n; : the # of times action i was taken by ¢

- SCImple ﬁt ~ f;(p) g{(t) : emp fb dist of action i at ¢

S; : signal matrix for action i

3.Decide the best action based on the sampled parameter and take it

O

Our Contribution
1. A novel TS-based algorithm based on a tight proposal distribution

2. First logarithmic regret upper bound both for PM and linear bandits * The first logarithmic problem-dependent bound of TS for PM

* The first logarithmic bound of TS for linear bandits

- take action i(?) := arg min LTpt Complicated posterior

What's Difficult in Theoretical Analysis?

Existing Approach: BPM-TS * Have to handle the effect of non-interested actions

* Track strategy param. by Bayes-update with a Gaussian conjugate prior

Background of Partial Monitoring

Formulation

ﬂ(p)l_IjN:1 exp (—HJ-@KL (61}””%19))

* Assumption: the outcomes are generated from a Gaussian with
* Partial monitoring game G = (L, H) with N actions and M outcomes

e loss matrix L = (¢; ;) € R™Y, feedback matrix H = (h; ;) € ZV
(X: set of feedback symbols)

covariance ), and unknown mean (actually follows Multi(p*)) - Approach: evaluate the worst-case effect of non-interested actions

* pros: fast computation - Lemma. E[worst-case statistics of non-interested actions] = O(log T')

* cons: discrepancy from the exact posterior f,(p) & no theory * Bound the probability that the optimal action is taken from below

Forroundt=1,...,T:
1. Player selects action i(¢) € {1,.. N} and play the action
2. Opponent selects outcome ](t%g@ Multi(p*) (p* € Py)

- Approach: use an argument of super-martingale

Proposed Algorithm (TSPM)

strategy  prob. s'mpleé@ Accept-Reject Sampling
3. Player suffers a loss ¢, ;,, and observe feedback y(1) = /i, * A method to obtain i.i.d. samples from a complex distribution f(x) Experimenfs on Dynqmic Pricing
L * Prepare a tight proposal distribution g(x) and do the following: : jecti
* Goal: minimize pseudo- regret P ght prop 8(x) 9 Regret Comparison Frequency of Rejection
Reg(T, p*) = Z (Ll(t)p LFp*) w.l.o.g. action 1 is optimal 1. Generate SGmP|e X ~ g(x) locally observable game  globally observable game locally observable game

expected loss expected loss L, : ith column of L 2. Accept X w.p. f(X)/Rg(X), N izz T B 0 MWMWW 1500

for taken action for best action 1 bied o | - TMGwsn B ﬁgﬁaimn A~ £ 5 1250
o Seller (= player) sells an item for a specific price i(r) € [N] where R = sup, f(x)/g(x) jlf(g()X) Z o | = e 7 £ o | — o =7 0 — maeom)| 3" T

° ° ° . M 1 1 )4 accept X gc)’*1000 b 2 400 g | -: 750 |
* Buyer (= opponent) comes with an evaluation price j(r) € [M] 3. Continue until getting accepted s > Sors x| i Ours™ =
TSPM (Ts-bqsed qlgorithm for PM) g(X) ’ L;.// 2500 5000 7500 10000 ’ 0;. 2500 5000 7500 10000 — ’ -

Example: Dynamic Pricing ‘dp-harc“ Prepare a tight proposal distribution A restricted to @MD roumd T M round 7 N _;\; . N _KBZT_ ,

Gaussian distribution

substantially better performance freq of rejection does not increase as
than existing methods round proceeds & M becomes large

‘. = {j—i (2 i) hi,j:{b”y (> i)

(otherwise) no-buy (otherwise)

N )
RE(P)HGXP< nllq” - 517“2) Sampling parameters from

=1 V| Pinsker’s inequality

#p)] Jexp (—n%( ,.“>||Sip)):

i=1

3 4) o (buy buy buy  buy
j>i

. Gaussian restricted to &%,

no-buy buy buy buy
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