Stability-penalty-adaptive follow-the-regularized-leader:
Sparsity, game-dependency, and best-of-both-worlds
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Environment Adaptivity of Follow-the-Regularized-Leader in Online Decision-Making Problems: Multi-armed Bandits Case

Multi-armed bandits (MAB)

Select one of k slot-machines for T times

Environment adaptivity
Data-dependent bounds:

to minimize the cumulative loss

Bounds that depend on the benign level of losses in adversarial env.
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The adversary determines loss vectors &, ..., {1 € [0,1]%
Fort=1,...,T:

|. The learner selects arm A, € {1,...,k}

2.The learner observes the loss of A,, £, 4 € [0,1]
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Goal: minimize the cumulative loss

. T
= minimize (pseudo-)regret R small mingey 2, £1q

. T

a* = arg MN,eeq, k) [E[zt=1 ff’a]
T T

RT = zt:l ffaAt - zf:l ft,a*]

Environments in bandit problems

Stochastic env.

Regret Y\
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Best-of-both-worlds: simultaneous optimality in stoc. & adv. env.

UCB O(lOg T) optimal

Background

® Many environment adaptivities can be
realized by Follow-the-Regularized-Leader (FTRL)
[Wei & Luo 18, Zimmert & Seldin 21, etc]
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® Need to design regularizers and learning rate in FTRL
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® Only a few algorithms can achieve simultaneous
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environment adaptivities
e (e.g., data-dependent bounds & BOBW)
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Research Question

Q. Is it possible to establish an algorithm with
a data-dependent bound and a BOBW

guarantee simultaneously?

Adversarial env.

M " UCB Q(T)
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Exp3 O(\/T)

optimal

A. Possible by adapting learning rate of FTRL

r : : :
to multiple observations simultaneously!

— apply this to MAB and partial monitoring

Follow-the-Regularized-Leader and Adaptive Learning Rate

Follow-the-Regularized-Leader (FTRL)

® Decide arm selection probability p, € 9, by minimizing “cumulative losses + regularizer”

cumulative estimated loss

. -1 2 1
p,=argmin,co (¥~ £ p) + - $(p)

(strongly-)convex regularizer

& € R : estimator of £,

P, (k= 1)-dim. prob. simplex learning rate

® Most of data-dependent bounds and BOBWV bounds are obtained by FTRL (or OMD)
® Achieved by adaptively determining the learning rate #, based on previous observations

— called adaptive learning rate

. . . . k
Adaptive learning rate w/ entropic regularizer ¢ (p) = Zazlpa logp,
e Main part of the regret of FTRL with learning rate (’Yr)tT=1 is
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penalty: large when the regularization is strong
stability: large when p, and p,_ ; are far apart
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e Existing adaptive learning rate (77t)tT=1 depends only on the penalty or stability

> 7, with empirical stability (z,)'_} & worst-case penalty h,, ( > max, 71/,
— induces data-dependent bounds [McMahan 2011; Lattimore & Szepesvéri 2020, and many!]
> 17, with empirical penalty (h,)'_} & worst-case stability z,,,,( > max,crr2,)
— induces best-of-both-worlds bounds [ito, Tsuchiya & Honda, 2022, Tsuchiya, Ito & Honda, 2023]
Q. Can we construct adaptive learning rate simultaneously dependent on

the empirical penalty and stability?

Stability-penalty-adaptive Learning Rate (SPA learning rate)

Definition. (informal)

Learning rate (;7t)tT=1 is stability-penalty-adaptive (SPA) learning rate if
there exist non-negative reals ((h, z,, Z,))._, satisfying a certain condition and 7, is

design that jointly depends on
stability z, and penalty /_
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Gheorem. (informal)

Let (1,)_, be a SPA learning rate. If ((,, z,, Z,)),_; in the SPA learning rate satisfies
cy + Z:h

Stability condition: (By+p)=>€+z forall t € [T] for some € > 0

then
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Q. Possible to achieve BOBW and data-dependent bounds simultaneously?
— Verifying cases of multi-armed bandits and partial monitoring

bound that jointly depends on
stability z;, and penalty /i,
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Corrupted Intermediate regime The learner
has no What we desire: simultaneous optimality
Adversarial | 7,,...,¢; € [0,1]% are knowled '
/ 5 ooy ’ ge on = -of- -
Environment arbitrarily determined environment Best-of-Both-Worlds (BOBW)

Case Study |: Sparsity and BOBW in Multi-armed Bandits

Sparsity-dependent bounds (€ data-dependent bounds)

® Many problems have sparse losses, £, € [— 1,11F with s = max, ¢ ||7]lg < k

Goal

000
https://SNS.com

Online ads allocation Online path control

No data loss in most routes:
For mosta € [k],Z,, =0

Most ads are not clicked on:
For mosta € [k], r,,:=—¢,,=0

Start

® Sparsity-dependent bounds: bounds that depend on the sparsity level s < k
lower bound Q(y/sT) , upper bound O(y/sT log k) (with known )

[Kwon & Perchet 2016] [Kwon & Perchet 2016, Bubeck, Cohen & Li 2018]

Simultaneously achieving sparsity-dependent and BOBW bounds

~

G’heorem. (informal) There exists an algorithm based on the SPA learning rate achieving
i slog(T)log(kT)
Amin

Adversarial Env.

Ry = O/ sT log(k) log(T))

Stochastic Env.
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techniques: |. sparsity estimation, 2. handle negative losses, 3. evaluate change of FTRL output
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Case Study 2: Game-dependency and BOBW in Partial Monitoring

Partial monitoring and examples

Many online decision-making problems
e prediction w/ expert advice

e multi-armed bandits

* dueling bandits

e dynamic pricing

Very general framework for online decision-making Partial Monitoring

under abstract feedback

Limitation of partial monitoring and game-dependent bounds

Formulations and algorithms are conservative and thus (sometimes) not practical
Hierarchical structure of online decision-making problems
Locally observable partial monitoring games
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Regret bounds that automatically depends on

"""""""""""""" -~ Dynamic pricin . . .
 Multi-armed bandits oo gy Oy the inherent difficulty of the problem being solved
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”‘ﬁxpert problem

= game-dependent bounds [Lattimore & Szepesvéri 2020]

Simultaneously achieving game-dependent and BOBW bounds

stability term
1/2
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if expert problems
if MAB =V
if Locally observable PM games

Vi, V: game-dependent variables

V/ ~ min max

PEP x€[d]

(p - qt)TL €y
n;
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heorem. (informal) For locally observable PM games, an alg. w/ SPA learning rate can
Stochastic Env. Adversarial Env.

0< > RT:O(E[

Existing bounds: the value for ¢ : is replaced with the worst-case scenario of the hardest problem:s.
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< Our bounds: if the game is easier (possibly unknown), the value adjusts accordingly.
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