
• Decide arm selection probability    by minimizing  “cumulative losses + regularizer" 
 
 
 
 

• Most of data-dependent bounds and BOBW bounds are obtained by FTRL (or OMD)

• Achieved by adaptively determining the learning rate  based on previous observations 

→ called adaptive learning rate

pt ∈ "k

ηt

• Many problems have sparse losses,  with  
 

 

• Sparsity-dependent bounds: bounds that depend on the sparsity level  

lower bound   ,          upper bound 

ℓt ∈ [−1,1]k s = maxt∈[T ] ∥ℓt∥0 ≪ k

s ≪ k
Ω( sT) O( sT log k)
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Stability-penalty-adaptive Learning Rate (SPA learning rate)

Multi-armed bandits (MAB)

Stochastic
Environment

# of rounds T

Exp3 O( T )
UCB O(log T )

T

Exp3 O( T )

UCB Ω(T )Regret

Environment adaptivity

What we desire: simultaneous optimality 
= Best-of-Both-Worlds (BOBW)

Background

• Many environment adaptivities can be  
realized by Follow-the-Regularized-Leader (FTRL)  

• Need to design regularizers and learning rate in FTRL

• Only a few algorithms can achieve simultaneous 
environment adaptivities  
(e.g., data-dependent bounds & BOBW)

[Wei & Luo 18, Zimmert & Seldin 21, etc]

Stability-penalty-adaptive follow-the-regularized-leader:  
Sparsity, game-dependency, and best-of-both-worlds

Q. Is it possible to establish an algorithm with 
     a data-dependent bound and a BOBW 
     guarantee simultaneously?

Research Question

Case Study 1: Sparsity and BOBW in Multi-armed Bandits

Very general framework for online decision-making  
under abstract feedback

Sparsity-dependent bounds (  data-dependent bounds)∈

Limitation of partial monitoring and game-dependent bounds

Simultaneously achieving game-dependent and BOBW bounds

Partial monitoring and examples

Case Study 2: Game-dependency and BOBW in Partial Monitoring

Follow-the-Regularized-Leader and Adaptive Learning Rate

The adversary determines loss vectors  

For  : 
  1. The learner selects arm 

  2. The learner observes the loss of  ,  

ℓ1, …, ℓT ∈ [0,1]k

t = 1,…, T
At ∈ {1,…, k}

At ℓt,At
∈ [0,1]

Select one of  slot-machines for  times
to minimize the cumulative loss

k T

Goal: minimize the cumulative loss 
         = minimize (pseudo-)regret  RT

RT = ' [∑T
t=1 ℓt,At

− ∑T
t=1 ℓt,a*]

a* = arg mina∈{1,…,k} '[∑T
t=1 ℓt,a]

pt = arg minp∈"k
⟨∑t−1

s=1
̂ℓs, p⟩ + 1

ηt
ϕt(p)

cumulative estimated loss (strongly-)convex regularizer

• Main part of the regret of FTRL with learning rate  is 

the expectation of the following : 

 
 
 
 

• Existing adaptive learning rate  depends only on the penalty or stability

‣    with empirical stability  & worst-case penalty   

→ induces data-dependent bounds

‣  with empirical penalty  & worst-case stability   

→ induces best-of-both-worlds bounds

(ηt)T
t=1̂,-. /0

T

(ηt)T
t=1

ηt (zs)t−1
s=1 hmax( ≥ maxt∈[T ] ht)

ηt (hs)t−1
s=1 zmax( ≥ maxt∈[T ] zt)

Q. Can we construct adaptive learning rate simultaneously dependent on
     the empirical penalty and stability?

Partial Monitoring
Many online decision-making problems 
• prediction w/ expert advice
• multi-armed bandits
• dueling bandits
• dynamic pricing
• …

O((log T )4)

O((log T )2) Õ( αT) O(α(log T )2 + Cα log T )

Õ( θT) O(θ(log T )4 + Cθ(log T )2)

 : estimator of ̂ℓs ∈ ℝk ℓs
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The learner 
has no 

knowledge on 
environment

 :  -dim. prob. simplex"k (k − 1)

Environment Adaptivity of Follow-the-Regularized-Leader in Online Decision-Making Problems: Multi-armed Bandits Case
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Data-dependent bounds: 
Bounds that depend on the benign level of losses in adversarial env.

Best-of-both-worlds: simultaneous optimality in stoc. & adv. env.

Environments in bandit problems

Stochastic env. Adversarial env.

Adversarial 
Environment

 for all ℓt,a ∼ ν*a a ∈ [k]

 are
arbitrarily determined
ℓ1, …, ℓT ∈ [0,1]k

Corrupted Intermediate regime

A. Possible by adapting learning rate of FTRL  
     to multiple observations simultaneously! 

     → apply this to MAB and partial monitoring

optimal
optimal

learning rate

Follow-the-Regularized-Leader (FTRL)

Adaptive learning rate w/ entropic regularizer ϕt(p) = ∑k
a=1 pa log pa

̂,-. /0
T =

T

∑
t=1 ( 1

ηt+1
− 1

ηt ) ht+1 +
T

∑
t=1

ηtzt

penalty stability

penalty: large when the regularization is strong
stability: large when  and  are far apart pt pt+1

[McMahan 2011; Lattimore & Szepesvári 2020, and many!]

[Ito, Tsuchiya & Honda, 2022, Tsuchiya, Ito & Honda, 2023]

Learning rate  is stability-penalty-adaptive (SPA) learning rate if
there exist non-negative reals  satisfying a certain condition and  is

(ηt)T
t=1

((ht, zt, z̄t))T
t=1 ηt

Definition. (informal)

βt = 1
ηt

, β1 > 0 , βt+1 = βt + c1zt

c2 + z̄h1 + ∑t−1
s=1 zshs+1

design that jointly depends on  
stability  and penalty zs hs+1

̂,-. /0
T = Õ( c2 + z̄th1 +

T

∑
t=1

ztht+1 )

Theorem. (informal) 

Let  be a SPA learning rate. If  in the SPA learning rate satisfies (ηt)T
t=1 ((ht, zt, z̄t))T

t=1

Stability condition:  
c2 + z̄th1

c1
(β1 + βt) ≥ ϵ + zt for all t ∈ [T ] for some ϵ > 0

then

Q. Possible to achieve BOBW and data-dependent bounds simultaneously?
     → Verifying cases of multi-armed bandits and partial monitoring

[Kwon & Perchet 2016] [Kwon & Perchet 2016, Bubeck, Cohen & Li 2018]

Online ads allocation

Most ads are not clicked on: 
For most ,  a ∈ [k] rta := − ℓta = 0

Online path control

No data loss in most routes: 
For most , a ∈ [k] ℓta = 0

There exists an algorithm based on the SPA learning rate achievingTheorem. (informal)

RT = O( s log(T )log(kT )
Δmin ) RT = O( sT log(k) log(T ))

Stochastic Env. Adversarial Env.

Simultaneously achieving sparsity-dependent and BOBW bounds

For locally observable PM games, an alg. w/ SPA learning rate canTheorem. (informal)

RT = O('[
T

∑
t=1

V′ t log(k)log(T ) ])RT = O( rℳV̄ log(T )log(kT )
Δmin )

Stochastic Env. Adversarial Env.

techniques: 1. sparsity estimation, 2. handle negative losses, 3.  evaluate change of FTRL output

J. Kwon & V. Perchet. Gains and losses are fundamentally different in regret minimization: The sparse case. JMLR 2016.
S. Bubeck, M. Cohen, & Y. Li. Sparsity, variance and curvature in multi-armed bandits. In ALT 2018.
T. Lattimore & Csaba Szepesvári. “Exploration by optimisation in partial monitoring.” In COLT 2020.

Formulations and algorithms are conservative and thus (sometimes) not practical

Existing bounds: the value for        is replaced with the worst-case scenario of the hardest problems. 
↔ Our bounds: if the game is easier (possibly unknown), the value adjusts accordingly.

Regret bounds that automatically depends on  
the inherent difficulty of the problem being solved 
= game-dependent bounds

V′ t ≃ min
p∈"′ k

max
x∈[d ] [ (p − qt)⊤L ex

ηt
+ 1

η2t

k

∑
a=1

paΨqt ( ηtG (a , Φax)
pa )] ≤

1/2 if ℳ is FI
k /2 if ℳ is MAB
3m2k3 if ℳ is PM-local

=: V̄

stability term
 : game-dependent variablesV′ t , V̄expert problems

MAB
Locally observable PM games

RT ≲ ' [ ̂,-. /0
T ] ≲ Õ ( ∑T

t=1 ' [ztht+1]) ≲ Õ ( ∑T
t=1 ' [ztht])SPA learning rate Lemma. ht+1 ≲ ht + ϵ

[Lattimore & Szepesvári 2020]

Hierarchical structure of online decision-making problems

1. The University of Tokyo,  2. NEC Corporation,  3. RIKEN,  4. Kyoto University

bound that jointly depends on  
stability  and penalty zs hs+1

(with known )s


