A Simple and Adaptive Learning Rate for FTRL in Online Learning with Minimax Regret of O(7"°/3)
and its Application to Best-of-Both-Worlds
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General Online Learning Framework

Given a finite action set A = [k] .= {1,...,k} and an observation set O

fort=1,2,...,Tdo
Environment determines a loss function ¢;: A — [0, 1]
Learner selects an action A; € A based on past observations without knowing ¢4

Learner then suffers a loss ¢4+(A¢) and observes a feedback oy € O

Goal: Minimize the regret Ry = E[3"/_; €:(Ar) — Y1y f(a*)] for a* € argminge g E[S1_ £4(a)]

= expert problem: observe entire loss vectors o; = ¢; € [0, 1]*
" multi-armed bandits: observe a loss of chosen arm o; = ¢;( Ay)

Follow-the-Regularized-Leader (FTRL)

Select an action selection probability vector ¢; over A

by minimizing the sum of cumulative (estimated) loss Zgj Zs(q) so far plus convex regularizer i

t—1

gt € argmin Us(q) + Bev(q) py At ~aq
4€PL | s=1

(P).: the set of probability distributions over A = [k], 8; > 0: learning rate at round t)

FTRL can perform adaptively to various properties of underlying loss functions
by designing its regularizer ¢ and learning rate (5¢)¢! — Q. How to tune the learning rate?

Stability-Penalty Decomposition

Research Questions
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= stability term: large when the difference in FTRL outputs, ¢+ and g1, is large
= penalty term: due to the strength of the regularizer

There is a tradeoff between these two terms.

For example when using FTRL with the negative Shannon entropy —H (-) (Exp3) in MAB (Auer et al., 2002b),

ht = H(qt> or ht lng and Zr = [HEH?V%/;((”H—J .

Adaptive Learning Rate in the Literature

= Use empirical stabilit (zs)g;% and worst-case penalty terms hypax > maxy by

e.g., AdaGrad (McMahan and Streeter, 2010; Duchi et al., 2011), first-order algorithms (Abernethy et al., 2012)

1/5y = \/const/(const +- Zg;% 2s)

= Use empirical penalty (hs)gj and worst-case stability terms zpax > maxy z¢
for best-of-both-worlds bounds e.g., (Ito et al., 2022a; Tsuchiya et al., 2023a)

Bi> 0, Bry1= B+ const/y/const + S0 by
= Use both empirical stability and penalty (Tsuchiya et al., 2023c; Jin et al., 2023; Ito et al.,

2024) for simultaneous data-dependent bounds and best-of-both-worlds bounds or for Tsallis-entropy
regularizer

Almost all adaptive learning rates are for problems with a minimax regret of ©(v/T)
+ Limited investigation into problems with a minimax regret of ©(T%/3)

There are many important online learning problems with a minimax regret of @(T2/3):

e.g., partial monitoring with global observability (Bartdk et al., 2011; Lattimore and Szepesvari, 2019%a), graph
bandits with weak observability (Alon et al., 2015), bandits with paid observations (Seldin et al., 2014), dueling
bandits (Saha et al., 2021), online ranking (Chaudhuri and Tewari, 2017)

Research Question: Can we provide a unified adaptive learning rate framework for online
learning with a minimax regret of @(T2/3), which allows us to achieve a certain adaptivity?

Stability-Penalty-Bias Decomposition

Common to use forced exploration for FTRL in online learning with the minimax regret of @(T2/3):
gt € arg miﬂqep,{{zg;% ls(q) + 51510(61)} , Ap~pr=1—y)qg+yu forue Py

The regret of FTRL with a somewhat large exploration rate ~; is known to be bounded as

~

f Stability—penalty—bias decomposition

R S Zﬁt% +Z (Bt = Br—1)ht + Z% (%)

t=1
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Goal: construct adaptive learning rate that minimizes (%) under the constraints that
(B¢)¢ is non-decreasing and B¢ depends on (214, h1:+) OF (214—1, h1:¢).

Stability-Penalty-Bias Matching Learning Rate

Step 1: Choose Exploration Rate ~;

A naive approach: choose v, = v/ 2/ 5; so that the stability term and the bias term match.
— this choice does not work well because to obtain a regret bound of (%), a lower bound of v, > u for some

uy > 0 1s needed. (This lower bound is used to control the magnitude of the loss estimator E.)
Alternative solution: consider the exploration rate of v = % + uy/ By for up > 0

With these choices, setting % = \/ 2t/ P yields
) < Z <— + (B — Bt—1)h + (% + ﬂ))
515 V¢ ﬁt

—Z( f *E*Eﬁf‘?f—l>hé):

penalty

F(ﬁl:Tu £1:T,U1:T, hl:T) :

Stab|llty + bias

Step 2: Choose Learning Rate 5
ldea: choose (5 so that stability + bias terms and penalty term match! (inspired by Ito et al. (2024))

(Bt — Bi—1)

~t

25@

( Stability-Penalty-Bias Matching (SPB-Matching, Rule 2 in the paper)

Bt = Bi— 1+A1< Z—i Z 1) and vt = 2t/ Bt + ut/ B

\Assume that when choosing 5;, we have an access to ﬁt > hy.

J

Designed by following the simple principle of matching the stability, penalty, and bias elements!

Main Result (1): Regret Bound by SPB-matching

f learning rate G is given by SPB-matching, then for all e > 1/T,
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= Depending on the stability component z; and the penalty component h; simultaneously

= Different from the existing stability-penalty adaptive type bounds O (ZtT:l \/ztiAth log T) in Tsuchiya et al.
(2023c); Jin et al. (2023); Ito et al. (2024)

Application: Best-of-Both-Worlds Algorithms

stochastic regime

adversarial regime

Best-of-Both-Worlds (BOBW) algorithm achieves a near- g, Regy -
optimal regret for stochastic and adversarial environments .

i Exp3 O(VT mm
simultaneousty | ) S
FTRL is useful for constructing BOBW algorithms. &% UCB Q(logT)

4
T / T

best-of-both-worlds

Main Result (2): BOBW for Problems with a Minimax Regret of @(TQ/ )
122 1p _pz .

gr = arg mmpepk{Z’; m p) + Bi(—Ha(p)) + 5<—Ha<p>>} . ae(01),a=1-a,

FTRL with a-Tsallis entropy H,(p

The FTRL with SPB-matching 5; for z; and hy satisfying a_ condition achieves

(zmaxh1)1/3T2/3 + Vumaxhi1 adversarial
2 1/3
Ry < &log (TAQ) + (C plog(TA)) corrupted stochastic

v log(T) stochastic

i for a problem-dependent constant p > 0. (A: minimum suboptimality gap)

The condition can be satisfied in several problems with a minimax regret of @(T2/3) d

Case Studies for Problems with a Minimax Regret of O(7%/%)

Partial monitoring with global observability: a general sequential decision-making problem with
feedback sym bols (cg: a game-dependent constant)

(Ours) Rp < cé log klog T/A? stochasticenv Rp < (CQT)Z/?)(log k)L/3 adversarial env

Graph bandits with weak observability: interpolation and extrapolation of expert problems and
multi-armed bandits (6* < k: fractional domination number)

©Ours) Rp < 6*logklog T/A? stochastic env Ry < (6*log k)L/3T2/3 adversarial env

MAB with paid observations (new BOBW result): you need to pay a cost of ¢ to observe a loss
(c: paid cost for observations)

©urs) Ry < max{c, 1}klog klogT/A? stochastic Ry < (cklog k)Y/3T2/3+\/Tlogk adversarial
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