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General Online Learning Framework

Given a finite action set A = [k] := {1, . . . , k} and an observation set O

for t = 1, 2, . . . , T do
Environment determines a loss function `t : A → [0, 1]
Learner selects an action At ∈ A based on past observations without knowing `t
Learner then suffers a loss `t(At) and observes a feedback ot ∈ O

Goal: Minimize the regret RT = E
[∑T

t=1 `t(At) −
∑T

t=1 `t(a∗)
]
for a∗ ∈ arg mina∈A E

[∑T
t=1 `t(a)

]
expert problem: observe entire loss vectors ot = `t ∈ [0, 1]k

multi-armed bandits: observe a loss of chosen arm ot = `t(At)

Follow-the-Regularized-Leader (FTRL)

Select an action selection probability vector qt over A
by minimizing the sum of cumulative (estimated) loss

∑t−1
s=1

̂̀s(q) so far plus convex regularizer ψ:
qt ∈ arg min

q∈Pk


t−1∑
s=1

̂̀s(q) + βtψ(q)

 , At ∼ qt

(Pk: the set of probability distributions over A = [k], βt > 0: learning rate at round t)

FTRL can perform adaptively to various properties of underlying loss functions

by designing its regularizer ψ and learning rate (βt)t! → Q. How to tune the learning rate?

Stability–Penalty Decomposition

RT .
T∑
t=1

zt
βt︸ ︷︷ ︸

stability term

+ β1h1 +
T∑
t=2

(βt − βt−1)ht︸ ︷︷ ︸
penalty term

.

stability term: large when the difference in FTRL outputs, qt and qt+1, is large

penalty term: due to the strength of the regularizer

There is a tradeoff between these two terms.

For example when using FTRL with the negative Shannon entropy −H(·) (Exp3) in MAB (Auer et al., 2002b),
ht = H(qt) or ht = log k and zt = E

[
‖̂̀t‖2

(∇2ψ(qt))−1
]
.

Adaptive Learning Rate in the Literature

Use empirical
::::::::::::::::
stability (zs)t−1

s=1 and worst-case penalty terms hmax ≥ maxt ht
e.g., AdaGrad (McMahan and Streeter, 2010; Duchi et al., 2011), first-order algorithms (Abernethy et al., 2012)

1/βt =
√
const/(const +

∑t−1
s=1 zs)

Use empirical penalty (hs)t−1
s=1 and worst-case

::::::::::::::::
stability terms zmax ≥ maxt zt

for best-of-both-worlds bounds e.g., (Ito et al., 2022a; Tsuchiya et al., 2023a)

β1 > 0 , βt+1 = βt + const/
√
const +

∑t−1
s=1 hs+1

Use both empirical
:::::::::::::::::
stability and penalty (Tsuchiya et al., 2023c; Jin et al., 2023; Ito et al.,

2024) for simultaneous data-dependent bounds and best-of-both-worlds bounds or for Tsallis-entropy

regularizer

Almost all adaptive learning rates are for problems with a minimax regret of Θ(
√
T )

↔ Limited investigation into problems with a minimax regret of Θ(T 2/3)

Research Questions

There are many important online learning problems with a minimax regret of Θ(T 2/3):
e.g., partial monitoring with global observability (Bartók et al., 2011; Lattimore and Szepesvári, 2019a), graph

bandits with weak observability (Alon et al., 2015), bandits with paid observations (Seldin et al., 2014), dueling

bandits (Saha et al., 2021), online ranking (Chaudhuri and Tewari, 2017)

Research Question: Can we provide a unified adaptive learning rate framework for online

learning with a minimax regret of Θ(T 2/3), which allows us to achieve a certain adaptivity?

Stability–Penalty–Bias Decomposition

Common to use forced exploration for FTRL in online learning with the minimax regret of Θ(T 2/3):

qt ∈ arg minq∈Pk

{∑t−1
s=1

̂̀s(q) + βtψ(q)
}
, At ∼ pt = (1 − γt)qt+ γtu for u ∈ Pk

The regret of FTRL with a somewhat large exploration rate γt is known to be bounded as

Stability–penalty–bias decomposition

RT .
T∑
t=1

zt
βtγt︸ ︷︷ ︸

stability term

+
T∑
t=1

(βt − βt−1)ht︸ ︷︷ ︸
penalty term

+
T∑
t=1

γt︸ ︷︷ ︸
bias term

(?)

Goal: construct adaptive learning rate that minimizes (?) under the constraints that
(βt)t is non-decreasing and βt depends on (z1:t, h1:t) or (z1:t−1, h1:t).

Stability–Penalty–Bias Matching Learning Rate

Step 1: Choose Exploration Rate γt

A naive approach: choose γt =
√
zt/βt so that the stability term and the bias term match.

→ this choice does not work well because to obtain a regret bound of (?),
::
a

:::::::::::
lower

:::::::::::::
bound

:::::
of

:::::::::::::::::::
γt ≥ ut/βt ::::::

for
:::::::::::
some

:::::::::::
ut > 0

::::
is

:::::::::::::::
needed. (This lower bound is used to control the magnitude of the loss estimator ̂̀t.)

Alternative solution: consider the exploration rate of γt = γ′
t + ut/βt for ut > 0

With these choices, setting γ′
t =

√
zt/βt yields

Eq.(?) ≤
T∑
t=1

(
zt
βtγ

′
t

+ (βt − βt−1)ht +
(
γ′
t + ut

βt

))

=
T∑
t=1

(
2
√
zt
βt

+ ut
βt︸ ︷︷ ︸

stability + bias

+ (βt − βt−1)ht︸ ︷︷ ︸
penalty

)
=: F (β1:T , z1:T , u1:T , h1:T ) .

Step 2: Choose Learning Rate βt

Idea: choose βt so that :::::::::::::::::
stability

::::
+

:::::::::
bias

::::::::::::::
terms and penalty term match! (inspired by Ito et al. (2024))

2
√
zt
βt

+ ut
βt

::::::::::::::::::::::

= (βt − βt−1)ht

Stability–Penalty–Bias Matching (SPB-Matching, Rule 2 in the paper)

βt = βt−1 + 1
ĥt

(
2
√
zt−1
βt−1

+ ut−1
βt−1

)
and γt =

√
zt/βt + ut/βt

Assume that when choosing βt, we have an access to ĥt ≥ ht.

Designed by following the simple principle of matching the stability, penalty, and bias elements!

Main Result (1): Regret Bound by SPB-matching

Theorem

If learning rate βt is given by SPB-matching, then for all ε ≥ 1/T ,

F (β1:T , z1:T , u1:T , h1:T ).min


 T∑
t=1

√
ztĥt+1 log(εT )

2
3

+
(√

zmaxĥmax
/
ε

)2
3
,

 T∑
t=1

√
ztĥmax

2
3


+ min


√√√√ T∑

t=1
utĥt+1 log(εT )+

√
umaxĥmax/ε ,

√√√√ T∑
t=1

utĥmax

 .

Depending on the stability component zt and the penalty component ht simultaneously

Different from the existing stability–penalty adaptive type bounds O

(∑T
t=1

√
ztĥt+1 log T

)
in Tsuchiya et al.

(2023c); Jin et al. (2023); Ito et al. (2024)

Application: Best-of-Both-Worlds Algorithms

T

stochastic regime

Exp3 O(
√
T )

UCB O(log T )

T

adversarial regime

Exp3 O(
√
T )

UCB Ω(T )

best-of-both-worlds

RegT RegTBest-of-Both-Worlds (BOBW) algorithm achieves a near-

optimal regret for stochastic and adversarial environments

simultaneously

FTRL is useful for constructing BOBW algorithms.

Main Result (2): BOBW for Problemswith a Minimax Regret of Θ(T 2/3)

FTRL with α-Tsallis entropy Hα(p) = 1
α

∑k
i=1(p

α
i − pi) :

qt = arg minp∈Pk

{∑t−1
s=1〈̂̀t, p〉 + βt(−Hα(p)) + β̄(−Hᾱ(p))

}
, α ∈ (0, 1) , ᾱ = 1 − α ,

Theorem

The FTRL with SPB-matching βt for zt and ht satisfying :::
a

:::::::::::::::::::::
condition achieves

RT .


(zmaxh1)1/3T 2/3 +

√
umaxh1T adversarial

ρ
∆2 log

(
T∆2) +

(
C2ρ
∆2 log

(
T∆
C

))1/3
corrupted stochastic

ρ
∆2 log(T ) stochastic

for a problem-dependent constant ρ > 0. (∆: minimum suboptimality gap)

::::::::
The

::::::::::::::::::::::
condition can be satisfied in several problems with a minimax regret of Θ(T 2/3) ↓

Case Studies for Problemswith a Minimax Regret of Θ(T 2/3)

Partial monitoring with global observability: a general sequential decision-making problem with

feedback symbols (cG: a game-dependent constant)

(Ours) RT . c2G log k log T/∆2 stochastic env RT . (cGT )2/3(log k)1/3 adversarial env

Graph bandits with weak observability: interpolation and extrapolation of expert problems and

multi-armed bandits (δ∗ ≤ k: fractional domination number)

(Ours) RT . δ∗ log k log T/∆2 stochastic env RT . (δ∗ log k)1/3T 2/3 adversarial env

MAB with paid observations (new BOBW result): you need to pay a cost of c to observe a loss
(c: paid cost for observations)

(Ours) RT . max{c, 1}k log k log T/∆2 stochastic RT . (ck log k)1/3T 2/3+
√
T log k adversarial
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