Fast Rates in Stochastic Online Convex Optimization
by Exploiting the Curvature of Feasible Sets
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Online Convex Optimization (OCO)

fort=1,2,...,Tdo
Learner selects z; from convex body K ¢ R? (K feasible set)

Environment reveals convex loss function f;: K — R (often bounded & Lipschitz)
Learner incurs loss fi(x¢) and observes V fi(x¢) (or fi)

Learner’s Goal: Minimize the (pseudo-)regret Ry = maxajeKIE[ZtT:l fr(xy) — Zthl ft(x)}.
The optimal decision x, is defined as x, € argmin,c i E[Zthl fr(x)].

When loss function f; is a linear function, i.e., f¢(-) = (g¢, -) for some g¢ € RY this problem is called
online linear optimization (OLO).

Lower Bound and Fast Rates for Curved Losses

Online Gradient Descent (OGD), xy41 + Hp(x; — n:V fi(x4)), achieves Ry = O(+/T) for Lipschitz
continuous f; (Zinkevich, 2003).

The O(\/T) bound cannot be improved in general (Hazan et al., 2007).

However, this lower bound can be circumvented when the loss functions are curved! (Hazan et al.,
2007)

Definition (strongly convex and exp-concave functions)

A function f: K — (—o0, 00| is a-strongly convex (w.r.t. a norm ||-||) if for all z,y € K,

fly) = fla) + (Vf(@)y — )+ Sz =yl

A function f: K — (—o00, 00| is f-exp-concave if exp(—/f£f(x)) is concave.

= OGD withy = ©(1/t) > Rp = O(é log T') for a-strongly convex losses
= Online Newton Step (ONS) = Ry = O(% logT') regret 5-exp-concave losses

Q. Any other conditions under which we can circumvent the Q(v/T') lower bound?

Exploiting the Curvature of Feasible Sets

Definition (strongly convex sets)
A convex body K is A-strongly convex w.r.t. a norm ||-|| if

A
Va,y € KV0€[0,1] bz +(1—0)y+001—60)7lle—y|* By S K.

Examples:

= {y-balls forp € (1,2
= Llevel set {z: f(x) < r}
for a strongly convex and smooth function f: R¢ — R

Theorem (Huang, Lattimore, Gyorgy, and Szepesvari, 2017)

In online linear optimization over A-strongly convex sets, Follow-the-Leader (FTL), z; &

arg Min,, ¢« g gj (gs, ), achieves (for G-Lipschitz losses)

G2
R = —log T’

If there exists L > 0 such that ||g1 + - - - + g¢||x > tL for all t € [T] (growth condition).
\

This upper bound matches their lower bound.

Research Questions

Some of the existing algorithms

1. are only applicable to online linear optimization (— cannot leverage the curvature of loss functions)
2. can suffer a large regret when some ideal conditions (e.g., the growth condition) are not satisfied
3. requires curvature over the entire boundary of the feasible set

Research Questions

1. Can we resolve these three limitations?
2. Are there any other characterizations of feasible sets for which we can achieve fast rates?

Sphere-enclosed Sets: A New Characterization of Feasible Sets

Definition (sphere-enclosed sets)

Let K  R% be a convex body, u € bd(K), and f: K — R. Then, convex body K is (p,u, f)-
sphere-enclosed if there exists a ball B(c, p) with ¢ € R% and p > 0 satisfying

1. u € bd(B(c, p))

2. K CB(c,p)
3. there exists k > 0 such that u + kV f(u) = ¢
\_ J
//// Y \\\\
,/Vf(y) |

Figure 1. Examples of sphere-enclosed sets Figure 2. Fig for proof

Main Result (1): Fast Rate over Sphere-enclosed Sets

Stochastic Environment: fi, fo,--- ~ D, [° =E; p[f], and z, = argmin ¢ ;¢ f°(z)
Adversarial Environment: fi, fo,... are fully adversarial

Theorem

Consider online convex optimization. Suppose that K is (p, z«, f°)-sphere-enclosed and that
V f°(zx) #£ 0. Then, there exists an algorithm (MetaGrad or universal online learning algorithm
by van Erven and Koolen 2016) such that

2
RTO<| G

[V ()]l
and Ry = O(GD+/T) in adversarial environments. (D: diam of K, G: Lipschitzness of f;)

log T) In stochastic environments

\_

Matches the lower bound in Huang et al. (2017)
Benefits of our bound:

1. Can achieve the O(log T') regret if the boundary of K is curved around the optimal decision
Ty OF T, IN ON COrners

2. Can handle convex loss functions and thus the curvature of loss functions (e.g., strong
convexity or exp-concavity) can be simultaneously exploited

3. Can achieve O(v/T) regret even in the worst-case scenarios

Limitation: Achieve fast rates only in stochastic environments
— Our bounds can be extended to corrupted stochastic environments with optimal guarantees!
(omitted)

Q. Any other condition for which we can achieve fast rates? —uniformly convex sets!

Proof Sketch
In stochastic environments, the regret is bounded from below by
- i - i
Rr=E | (fx) — )| ZE ) (VFO(wi), x1 — ) (convexity of f°)
t=1 t=1
T

> K

(sphere-enclosedness of K)

Z’y*HZCt — 5| for some v >0
t=1

The universal online learning algorithms achieve

T
Ry SE \ > Nz — @il log T
t=1

Combining upper and lower bounds of regret and Jensen'’s inequality,

= . - i}
logT

Rr S (B llwe — ol | logT — % | ) o — 2l < .
\ r—1 i1 ar—bxr2<a?/(4b) Tk

[Check >] Consider a ball facing at z« (see the left figure):
BE = B(2,+ £V f(w2), VL ()],) € R

Observation: z € Bé( is equivalent to (V£o(my), 2 — zx) > ||z — 2|5

From the (p, z«, f°)-sphere-enclosedness of K, there exists v > 0 so that K C BX and thus
(VfO(@), @t — ) > ]|zt — 45

One can set 4 to v = sup{y > 0: K C B,é(} ]

(Since K is (p, xx, f°)-sphere-enclosing, v, satisfies v, < oo and 2—,1Y*HVfO<ZU*)|| =p.)

Main Result (2): Faster Rates over Uniformly Convex Sets

Definition (uniformly convex sets)

A convex body K is (k, g)-uniformly convex w.r.t. a norm ||-|| (or g-uniformly convex) if

Vi, y € K,¥0 € [0,1] Oz + (1 — 0y +6(1 — e)gnx —y| B C K.

(& J

Examples: ¢,-balls for p € (1, 00), (k, 2)-uniformly convex set is k-strongly convex

Consider online convex optimization. Suppose that K is (k, q)-uniformly convex and that
V f°(x%) # 0. Then, there exists an algorithm such that

Ga—1 q—2 q

Rpr=0 T2a-V(log T)2e=1 | in stochastic environments

1
(Bl V o (e[ e
and Ry = O(GD+/T) in adversarial environments. (D: diam of K, G: Lipschitzness of f;)

_/

= Becomes O(log T') when ¢ = 2 and O(v/T) s, thus interpolating between the bound over the

strongly convex sets and non-curved feasible sets
q—2

= Strictly better than the O(Tﬁ) bound, which can be achieved by FTL and becomes smaller
than O(v/T) only when ¢ € (2,3), in Kerdreux, d’Aspremont, and Pokutta (2021a).
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