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Summary

* We consider the multi-armed bandit problem with K arms and T rounds

* We propose a best-of-both-worlds algorithm for three regimes:



Summary

* We consider the multi-armed bandit problem with K arms and T rounds
* We propose a best-of-both-worlds algorithm for three regimes:
. . of
* Stochastic regime: R(T) = O (Ziii* (A_l + 1) log T)
* A;: suboptimality gap of arm i

¢ O'iz:

variance of arm i



Summary

* We consider the multi-armed bandit problem with K arms and T rounds

* We propose a best-of-both-worlds algorithm for three regimes:

* Adversarial regime: R(T) = 0(\/1( log T - min{T, L*, Qo })

« L' = rrel%}}] E[>I_,2;+()]: cumulative loss for the optimal arm
l

* Qu = mz)in E [ T_il[e@® - ?”i‘ variation of loss (w.r.t. L°-norm)



Summary

* We consider the multi-armed bandit problem with K arms and T rounds

* We propose a best-of-both-worlds algorithm for three regimes:

* Stochastic regime w/ adversarial corruption:
o} of
R(T) = 0 (Ziii* (E + 1) log T + JC i (A—i + 1) log T)

* (: corruption level
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Multi-armed bandits

K:the number arms; [K] ={1,2,...,K}: set of arms

T: the number of rounds

Fort =1,2,...,T:
* The environment chooses a loss vector £(t) = (fl (), £,(t), ..., fK(t))T e [0,1]¥
* The player chooses an arm I(t) € [K] and observes the incurred loss £} (t)

Performance metric: the regret R(T) defined as

Re(T) =E| ) £ip(® = ) £:(®)|, R = max Ri:(T)
Lt=1 t=1 -

i*€[K]




Three regimes for environment

* Stochastic regime:
e Assume #(t) isiid.fort =1,2,..,T

« u; = E[£;(t)], i*€arg lfg[lKn] ui, A;=pp—pe, of = E[(£;(t) — w)?]

* We assume the best arm i is unique,i.e.,A; > Oforall i #i”



Three regimes for environment

* Stochastic regime:
e Assume #(t) isiid.fort =1,2,..,T

* w = E[£;(®)], i"earg min g, Ap = p; — e, of = E[(£;(8) — p)?]
* We assume the best arm i is unique,i.e.,A; > Oforall i #i”

* Adversarial regime:
* The environment chooses £(t) € [0,1]% depending on {(f(s),[(s))}z;i
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Three regimes for environment

* Stochastic regime:
e Assume #(t) isiid.fort =1,2,..,T

* u; = E[£;()], " €arg lfg[lKn] Wi, A= —pp, of = E[(£(t) — u)?]
* We assume the best arm i is unique,i.e.,A; > Oforall i #i”
* Adversarial regime:

* The environment chooses £(t) € [0,1]% depending on {(f(s),l(s))}z;i

* Stochastic regime with adversarial corruption:
* The loss is expressed as £(t) = ¢'(t) + c(t) € [0,1]¥
« £'(t) € [0,1]%: stochastic (i.i.d.) stochastic regime (C = 0)

K : . N
[ — .
C(t) € [ 1’1] : adversarial noise stochastic regime w/ adversarial constraints

e Corruption level C == Y.I_1 E[|lc(t)]loo] C=3" 12~ )l
* ( = 0 = stochastic regimes, n
C: unbounded = adversarial regimes adversarial regime



Regret bounds: existing studies

Variance-dependent
regret bound

Stochastic Adversarial Stochastic with adversarial corruption

[lifd:iEe-r:/-l-, 2009] 0 (Zi:APO (Z_lj + 1) log T) NA NA




Regret bounds: existing studies

Variance-dependent
regret bound

Stochastic Adversarial Stochastic with adversarial corruption
UC_B'V 0 (Zi.A.>0 (U—"Z + 1) log T) NA Best of both worlds I NA
[Audibert+, 2009] it A;
N
Tsallis-INF 1 " 1
[Zimmert&Seldin, O (Zi:Ai>0 Zi log T) 0 (\/[(T) 0 (Zi:Ai>0 A logT + \/C Zi:Ai>0 A; log T)

2021]
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Regret bounds: existing studies

Variance-dependent
regret bound

Stochastic Adversarial Stochastic with adversarial corruption

o? . .
[Liﬁfe'r\ti 2009] 0 (Zi: A0 (A—‘l + 1) log T) N Best of both worlds | NA | Robust against corruption I

N
Tsallis-INF

1 1 1
[Zimmert&Seldin, O (Zi:Ai>0 A log T) 0 (\/[(T) 0 (Zi:Ai>0 A logT + \/C Zi:Ai>0 A, log T)
2021] . ' '

1

- 1 1
:}5’, 2'([2'5 0 (Ziii* x, 108 T) O(JKlogT -min{T,L", Q. V,}) O (Ziii*A_ilOgT + \/C Lizi* 5108 T)
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Regret bounds: existing studies

Variance-dependent
regret bound

Stochastic Adversarial Stochastic with adversarial corruption

UCB-V o? . ;
Audibert, 2009] 0 (Zi: A0 (A_i + 1) log T) N Best of both worlds I NA I Robust against corruption I

- —
Tsallis-INF 1 ) -
(Zimmercgselgin, O (ZMPO 2,108 T) 0(VKT) 0 (ZMPO a 08T + \[ CXia;>07 108 T)
2021] i i i
- 1 1 1
:;E ZI(!ZI,I]: 0 (Ziii* A; log T) O(yKlogT -min{T,L",Q.,, V}) O (Zm* alo8T + \/C Diti* x, 108 T)

.. T . : : Data-dependent
e L' = igébrg] E[Y{=1 £;(t)]: cumulative loss for the optimal arm regret bound

* Q. =minE [Z{=1||{’i*(t) — ?||i] variation of loss (w.r.t. L*-norm)

-V, = E[ZTZHe@) — £t — DIy | path-length (w.rt. L*-norm)
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Can we go further!

In many applications such as recommender systems...

000
* Positive label feedback (e.g., to purchase or click) is rare https://SNS.com

= small variance ¢/’
= algorithm w/ variance-dependent regret bound
can perform very well Ad povon |

Ad position 2

Ad position 3

* Losses / rewards are not always i.i.d.
= BOBW and corruption-robustness are important

Research question: any BOBW algorithm with a variance-dependent regret bound?




Regret bounds: this study

Stochastic Adversarial Stochastic with adversarial corruption

UCB-V o?
[Audibert+, 2009] 0 (Zi:APO (A_l- + 1) log T) NA NA
Tsallis-INF 1 ) -
[Zimmert&Seldin, O (Zi:Ai>0 y log T) 0 (\/ﬁ) 0 (Zi:Ai>0 ~logT + \/ C Y07 108 T)
2021] : i i

- 1 1 1
:;E Jj}'ﬁ 0 (Ziii* x, 108 T) O(JKlogT -min{T,L", 0., V;}) O (Ziii* alo8T + \/C Lizi* 5108 T)
LB-INF-V

2 o? o?
(This work) ¢ (Ziii* (Z—ll + 1) log T) O(JKlogT -min{T,.",0..}) ¢ <Zm* (x +1)logT + \/C Lixi (A— +1) logT>

* This study proposes the first BOBW algorithm with variance-dependent regret bounds
* The proposed algorithm (LB-INF-V) is corruption-robust and has
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Regret bounds: this study

Stochastic Gap from lower bound Adversarial
AT Siago (10 Z—Z +20)logT  ~5 NA
;I;lsn?rlr!:eft-éil(i:llzn 0w LiAg>0 Aii logT ~ 2 O(VKT)
[L,t'i;'([;‘,f ~ 36 Nzt Aiilog T ~ 72 0(/KlogT - min{T, I, Qo, V1})

LB-INF-V

(This work)

2

~ Ziii*max{ALZ—ii,Z} logT =~ 2

O(y/KlogT - min{T, L*, Qs})

The leading constant of the regret upper bound

is close to the lower bound (gap ~ 2)

|7
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Regret bounds: this study

Stochastic Gap from lower bound Adversarial

UCB-V O.iz ~ 5 NA
[Audibert+, 2009] Zi:Ai>0 (10 A; + 20) logT
Tsallis-INF ~ Y. LlosT x 2 O(VKT
[Zimmert&Seldin, 2021] Zl:Ai>0 Aj 05 ( )
LB-INF ~ 36 . ilog T ~ 72 0(\/1{ log T - min{T, L*, Q, Vl})
[Ito, 2021] Aj
LB-INF-V £ ~ 2 — -
This worl] ~ Ziii* max {42_1, 2} lOg T 0(\/K logT mln{T, L, Qoo})

2 ~ : ”
LB-INF-V- ~ Ziii*max{80_l,'4} logT = 4 O(yKlog T - min{T, L*, Qc, V1 })
(This work)

* The leading constant of the regret upper bound is close to the lower bound (gap = 2)
to the algorithm yield a
in exchange for a larger constant
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Proposed algorithm

° oPtimistic follow the regularized leader (cf [Rakhlin & Sridharan, 2013], [Wei & Luo, 2018])
* For each t, choose I(t) € [K] according to tige distribution p(t) such that

Z1
p(t) € arg min {(m(t) + z ?5,p> + (p)}
s=1
« m(t) € [0,1]%: optimistic prediction for £(t)

« 7, € RX: unbiased estimator of #,
: convex regularization function
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Proposed algorithm

° OPtimistic follow the regularized leader (cf [Rakhlin & Sridharan, 2013], [Wei & Luo, 2018])
* For each t, choose I(t) € [K] according to the distribution p(t) such that

t—1
p(t) € arggleqji)r; {<m(t) + z ?s,p + (p)}
s=1

« m(t) € [0,1]%: optimistic prediction for £(t)
« 7, € RX: unbiased estimator of #,
: convex regularization function

Converges to W;

~ Xtz 1[1(s)=i]4;(5)
« Optimistic prediction: empirical mean of observed data of losse m;(t) = 2*—= :
1427 1[1(s)=i]

21
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Proposed algorithm

° OPtimistic follow the regularized leader (cf [Rakhlin & Sridharan, 2013], [Wei & Luo, 2018])
* For each t, choose I(t) € [K] according to the distribution p(t) such that

t—1
p(t) € arggleqji)r; {<m(t) + z ?s,p + (p)}
s=1

« m(t) € [0,1]%: optimistic prediction for £(t)
« 7, € RX: unbiased estimator of #,
: convex regularization function

Converges to W;

~ Xtz 1[1(s)=i]4;(5)
« Optimistic prediction: empirical mean of observed data of losse m;(t) = 2*—= :
1427 1[1(s)=i]

. ] ” 1[1(t)=i
* Unbiased estimator: ¢;(t) = m;(t) + [p(i()t) d (f i(t) — mi(t)) Reduce variances using m; (t)




Proposed algorithm

* Optimistic follow the regularized leader
* For each t, choose I(t) € |[K] according to tlggldistribution p(t) such that

p(t) € arggleqji)r; {<m(t) + z P.,p)+ (p)}
s=1

: convex regularization function

pe(p) = Xict Bi() P (0;), where
« p(x) =x—1—-logx+1logT - (x + (1 —x)log(1l —x))

Log-barrier regularization Entropy regularization for (1 — x):
cf. BROAD [WeiLuo, 2018], LB-INF [ito, 2021] used to handle the impact of the variance of the optimal arm

23



Proposed algorithm

* Optimistic follow the regularized leader
* For each t, choose I(t) € |[K] according to tlggldistribution p(t) such that

p(t) € arggleqji)r; {<m(t) + z P.,p)+ (p)}
s=1

: convex regularization function

pe(p) = Xict Bi() P (0;), where
« p(x) =x—1—-logx+1logT - (x + (1 —x)log(1l —x))

Log-barrier regularization Entropy regularization for (1 — x):
cf. BROAD [WeiLuo, 2018], LB-INF [ito, 2021] used to handle the impact of the variance of the optimal arm

2
* [3;(t): adaptively chosen based on squared prediction error (31(5) — My(s) (S)) of m(s)

2
5% 01(s)
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Regret analysis: stochastic regime

* Definition of ; and a standard analysis technique for OFTRL yield:

Gem. | For sufficiently large 7, R(T) ~ O (Zi#*\/ Zil 1[1(z) = il(f (1) — mi(t))zigg(T@

* Definition of m(t) yields:

Gem. 2 E [Zf:l 1[I(t) = il(f,.(t) — mi(t))zl =0 (I%E[Zf=1 p(H)] + log(T)) )

* Combining the above two lemmas and Jensen’s inequality, we obtain:

Grop. I For sufficiently large 7, R(T) = O (Zi#* [E[Z,T=1pi(t)] log(T) + Klog(T)))




Regret analysis: stochastic regime

Grop. I For sufficiently large T, R(T) = O (Z i \/ o? [E[Z,T=1pi(t)] log(T) + K log(T)D

_|_

Gelf-bounding constraint. R(I)=2 .AE [Z;Pi(l‘)])

\ 4

Self-bounding technique
cf. [Zimmert & Seldin, 2021],
[Wei & Luo, 2018], [Gaillard+, 2014]

27
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Regret analysis: adversarial regime

* Deéfinition of 1, and a standard analysis technique for OFTRL yield:

Gem. I For sufficiently large 7, R(T) ~ O (Ei#*\/ Zil L[I(2) = i](Z(?) — mi(t))zlog(T@

* Definition of m(t) yields:

-

Lem. 3 It holds for any £* € [0,1]X that
E| XL, 100 = 30 - m©P| = B[ 3] 110 = 10 - 277 + 0K log(T))

Consequently,

E |21, U = A0 - m©)P| = min{Qy,, L* + RT), T = L* = R(T)} + O(K log(T))

~

« Combining the above two lemmas | and 3, we obtain R(T) = O (\/Kmin{Qoo,L*, T — L*}og(T) + Klog(T))



Numerical Comparison with
Thompson Sampling & Tsallis-INF w/ RV-estimator

Setting: Bernoulli bandits with K =5

Experiment |.

* Stochastic regime

e u=(05,0.9,..,
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* Stochastic regime
e u=(0.5,0.55,..,0.55)
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Experiment 3.

* Stochastically constrained
adversarial regime

® A = 0.1(same as Figure 3
in [Zimmert & Seldin 2021])
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Conclusion

* OFTRL with adaptive learning rate achieves

stochastic regime (C = 0)

N adversarial regime w/
stochastic regime V]\{/ adversarial constraints self-bounding constraints
(C=3" 117~ £l
N o o2
adversarial regime O —+ DlogT+ _|C ) (—+ DlogT
g 2. (5 + Dlog 2 (4 + Diog

0 <\/Kmin{ T.L*, 0. log T) 7 7

2

o7 . variance ofarm i

The leading constant of the regret upper bound
is close to the lower bound (gap = 2)
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Conclusion

* OFTRL with adaptive learning rate achieves

stochastic regime (C = 0)

N adversarial regime w/
stochastic regime V]\{/ adversarial constraints self-bounding constraints
(C=3" 117~ £l
N o o2
adversarial regime 0 — + Dlog T+ _|C — + Dlog T
2 (4 + Diog 2 (4 + Diog

0 <\/Kmin{ T.L*, 0] log T) 7 7

2

o7 . variance ofarm i

The leading constant of the regret upper bound
is close to the lower bound (gap = 2)

* Open questions and future directions:
* Can we achieve a gap < 2 while preserving BOBW and/or corruption-robustness!?
* Can we remove the assumption that the optimal arm is unique!?



