Adversarially Robust Multi-Armed Bandit Algorithm with Variance-Dependent Regret Bounds

Shinji Ito^{1,3}, <u>Taira Tsuchiya</u>^{2,3}, Junya Honda^{2,3} I. NEC Corporation, 2. Kyoto University, 3. RIKEN AIP

COLT2022@London, 2022.07.04

- We consider the multi-armed bandit problem with K arms and T rounds
- We propose a best-of-both-worlds algorithm for **three regimes**:

- We consider the multi-armed bandit problem with K arms and T rounds
- We propose a best-of-both-worlds algorithm for **three regimes**:
 - <u>Stochastic regime</u>: $R(T) = O\left(\sum_{i \neq i^*} \left(\frac{\sigma_i^2}{\Delta_i} + 1\right) \log T\right)$
 - Δ_i : suboptimality gap of arm i
 - σ_i^2 : variance of arm *i*

- We consider the multi-armed bandit problem with K arms and T rounds
- We propose a best-of-both-worlds algorithm for **three regimes**:
 - <u>Stochastic regime</u>: $R(T) = O\left(\sum_{i \neq i^*} \left(\frac{\sigma_i^2}{\Delta_i} + 1\right) \log T\right)$
 - Δ_i : suboptimality gap of arm i
 - σ_i^2 : variance of arm *i*
 - <u>Adversarial regime</u>: $R(T) = O\left(\sqrt{K \log T \cdot \min\{T, L^*, Q_\infty\}}\right)$
 - $L^* = \min_{i^* \in [K]} \mathbf{E}[\sum_{t=1}^T \ell_{i^*}(t)]$: cumulative loss for the optimal arm

• $Q_{\infty} = \min_{\overline{\ell}} \mathbf{E} \left[\sum_{t=1}^{T} \left\| \ell(t) - \overline{\ell} \right\|_{\infty}^{2} \right]$: variation of loss (w.r.t. L^{∞} -norm)

- We consider the multi-armed bandit problem with K arms and T rounds
- We propose a best-of-both-worlds algorithm for **three regimes**:
 - <u>Stochastic regime</u>: $R(T) = O\left(\sum_{i \neq i^*} \left(\frac{\sigma_i^2}{\Delta_i} + 1\right) \log T\right)$
 - Δ_i : suboptimality gap of arm i
 - σ_i^2 : variance of arm *i*
 - Adversarial regime: $R(T) = O(\sqrt{K \log T \cdot \min\{T, L^*, Q_\infty\}})$
 - $L^* = \min_{i^* \in [K]} \mathbf{E}[\sum_{t=1}^T \ell_{i^*}(t)]$: cumulative loss for the optimal arm • $Q_{\infty} = \min_{\overline{\ell}} \mathbf{E}\left[\sum_{t=1}^T \left\|\ell(t) - \overline{\ell}\right\|_{\infty}^2\right]$: variation of loss (w.r.t. L^{∞} -norm)
 - <u>Stochastic regime w/ adversarial corruption:</u> $R(T) = O\left(\sum_{i \neq i^*} \left(\frac{\sigma_i^2}{\Delta_i} + 1\right) \log T + \sqrt{C \sum_{i \neq i^*} \left(\frac{\sigma_i^2}{\Delta_i} + 1\right) \log T}\right)$ • C: corruption level

Outline

- Introduction
- Problem setting
- Regret bounds
- Proposed algorithm
- Regret Analysis
- Numerical examples

/

Multi-armed bandits

- K: the number arms; $[K] = \{1, 2, \dots, K\}$: set of arms
- *T*: the number of rounds
- For t = 1, 2, ..., T:
 - The environment chooses a loss vector $\ell(t) = (\ell_1(t), \ell_2(t), \dots, \ell_K(t))^{\top} \in [0, 1]^K$
 - The player chooses an arm $I(t) \in [K]$ and observes the incurred loss $\ell_{I(t)}(t)$
- Performance metric: the regret R(T) defined as

$$R_{i^*}(T) = \mathbf{E}\left[\sum_{t=1}^T \ell_{I(t)}(t) - \sum_{t=1}^T \ell_{i^*}(t)\right], \qquad R(T) = \max_{i^* \in [K]} R_{i^*}(T)$$

Three regimes for environment

• Stochastic regime:

- Assume $\ell(t)$ is i.i.d. for t = 1, 2, ..., T
- $\mu_i = \mathbf{E}[\ell_i(t)], \quad i^* \in \arg\min_{i \in [K]} \mu_i, \quad \Delta_i = \mu_i \mu_{i^*}, \quad \sigma_i^2 = E[(\ell_i(t) \mu_i)^2]$
- We assume the best arm i^* is unique, i.e., $\Delta_i > 0$ for all $i \neq i^*$

Three regimes for environment

• Stochastic regime:

- Assume $\ell(t)$ is i.i.d. for t = 1, 2, ..., T
- $\mu_i = \mathbf{E}[\ell_i(t)], \quad i^* \in \arg\min_{i \in [K]} \mu_i, \quad \Delta_i = \mu_i \mu_{i^*}, \quad \sigma_i^2 = E[(\ell_i(t) \mu_i)^2]$
- We assume the best arm i^* is unique, i.e., $\Delta_i > 0$ for all $i \neq i^*$

Adversarial regime:

• The environment chooses $\ell(t) \in [0,1]^K$ depending on $\{(\ell(s), I(s))\}_{s=1}^{t-1}$

Three regimes for environment

• Stochastic regime:

- Assume $\ell(t)$ is i.i.d. for t = 1, 2, ..., T
- $\mu_i = \mathbf{E}[\ell_i(t)], \quad i^* \in \arg\min_{i \in [K]} \mu_i, \quad \Delta_i = \mu_i \mu_{i^*}, \quad \sigma_i^2 = E[(\ell_i(t) \mu_i)^2]$
- We assume the best arm i^* is unique, i.e., $\Delta_i > 0$ for all $i \neq i^*$

Adversarial regime:

- The environment chooses $\ell(t) \in [0,1]^K$ depending on $\{(\ell(s), I(s))\}_{s=1}^{t-1}$
- Stochastic regime with adversarial corruption:
 - The loss is expressed as $\ell(t) = \ell'(t) + c(t) \in [0,1]^K$
 - $\ell'(t) \in [0,1]^K$: stochastic (i.i.d.)
 - $c(t) \in [-1,1]^K$: adversarial noise
 - Corruption level $C \coloneqq \sum_{t=1}^{T} \mathbf{E}[\|c(t)\|_{\infty}]$
 - $C = 0 \Rightarrow$ stochastic regimes, C: unbounded \Rightarrow adversarial regimes

stochastic regime (C = 0) \cap stochastic regime w/ adversarial constraints $(C = \sum_{t=1}^{T} ||\bar{\ell}_t - \ell_t||_{\infty})$ \cap adversarial regime

Regret bounds: existing studies

Regret bounds: existing studies

Regret bounds: existing studies

14

Can we go further?

In many applications such as recommender systems...

- Positive label feedback (e.g., to purchase or click) is rare
 ⇒ small variance σ_i²
 ⇒ algorithm w/ variance-dependent regret bound
 - can perform very well
- Losses / rewards are not always i.i.d.
 ⇒ BOBW and corruption-robustness are important

<u>Research question</u>: any BOBW algorithm with a variance-dependent regret bound?

000	
https://SNS.com	
	Ad position 2
Ad position I	Ad position 3
l ====	

Regret bounds: this study

LB-INF-V
(This work)
$$O\left(\sum_{i\neq i^*} \left(\frac{\sigma_i^2}{\Delta_i} + 1\right) \log T\right) \quad O\left(\sqrt{K \log T \cdot \min\{T, L^*, Q_\infty\}}\right) \quad O\left(\sum_{i\neq i^*} \left(\frac{\sigma_i^2}{\Delta_i} + 1\right) \log T + \sqrt{C \sum_{i\neq i^*} \left(\frac{\sigma_i^2}{\Delta_i} + 1\right) \log T}\right)$$

- This study proposes the first **BOBW** algorithm with variance-dependent regret bounds
- The proposed algorithm (LB-INF-V) is corruption-robust and has data-dependent regret bounds

Regret bounds: this study

	Stochastic	Gap from lower bound	Adversarial
UCB-V [Audibert+, 2009]	$\sum_{i:\Delta_i>0} \left(10\frac{\sigma_i^2}{\Delta_i} + 20\right) \log T$	≈ 5	NA
Tsallis-INF [Zimmert&Seldin, 2021]	$\approx \sum_{i:\Delta_i>0} \frac{1}{\Delta_i} \log T$	≈ 2	$O\left(\sqrt{KT}\right)$
LB-INF [Ito, 2021]	$\approx 36 \sum_{i \neq i^*} \frac{1}{\Delta_i} \log T$	≈ 72	$O\left(\sqrt{K\log T \cdot \min\{T, L^*, Q_{\infty}, V_1\}}\right)$
LB-INF-V (This work)	$\approx \sum_{i \neq i^*} \max\left\{4 \frac{\sigma_i^2}{\Delta_i}, 2\right\} \log T$	≈ 2	$O\left(\sqrt{K\log T \cdot \min\{T, L^*, Q_\infty\}}\right)$

The leading constant of the regret upper bound is close to the lower bound $(gap \approx 2)$

Regret bounds: this study

	Stochastic	Gap from lower bound	Adversarial
UCB-V [Audibert+, 2009]	$\sum_{i:\Delta_i>0} \left(10\frac{\sigma_i^2}{\Delta_i} + 20\right) \log T$	≈ 5	NA
Tsallis-INF [Zimmert&Seldin, 2021]	$\approx \sum_{i:\Delta_i>0} \frac{1}{\Delta_i} \log T$	≈ 2	$O\left(\sqrt{KT}\right)$
LB-INF [Ito, 2021]	$\approx 36 \sum_{i \neq i^*} \frac{1}{\Delta_i} \log T$	≈ 72	$O\left(\sqrt{K\log T}\cdot\min\{T,L^*,Q_\infty,V_1\}\right)$
LB-INF-V [This work]	$\approx \sum_{i \neq i^*} \max\left\{4 \frac{\sigma_i^2}{\Delta_i}, 2\right\} \log T$	≈ 2	$O\left(\sqrt{K\log T \cdot \min\{T, L^*, Q_\infty\}}\right)$
LB-INF-V- mod (This work)	$\approx \sum_{i \neq i^*} \max\left\{8 \frac{\sigma_i^2}{\Delta_i}, 4\right\} \log T$	≈ 4	$O\left(\sqrt{K\log T \cdot \min\{T, L^*, Q_{\infty}, V_1\}}\right)$

- The leading constant of the regret upper bound is close to the lower bound (gap ≈ 2)
- Modifications to the algorithm yield a path-length regret bound in exchange for a larger constant

Outline

- Introduction
- Problem setting
- Regret bounds
- Proposed algorithm
- Regret Analysis
- Numerical examples

- Optimistic follow the regularized leader (cf. [Rakhlin & Sridharan, 2013], [Wei & Luo, 2018])
 - For each t, choose $I(t) \in [K]$ according to the distribution p(t) such that

$$p(t) \in \arg\min_{p \in \mathcal{P}_K} \left\{ \left| \frac{m(t)}{m(t)} + \sum_{s=1}^{t-1} \hat{\ell}_s, p \right| + \frac{\psi_t(p)}{\psi_t(p)} \right\}$$

- $m(t) \in [0,1]^K$: optimistic prediction for $\ell(t)$
- $\hat{\ell}_t \in \mathbb{R}^K$: unbiased estimator of ℓ_t
- ψ_t : convex regularization function

21

Proposed algorithm

- Optimistic follow the regularized leader (cf. [Rakhlin & Sridharan, 2013], [Wei & Luo, 2018])
 - For each t, choose $I(t) \in [K]$ according to the distribution p(t) such that

$$p(t) \in \arg\min_{p \in \mathcal{P}_K} \left\{ \left| \frac{m(t)}{m(t)} + \sum_{s=1}^{t-1} \hat{\ell}_s, p \right| + \frac{\psi_t(p)}{\psi_t(p)} \right\}$$

- $m(t) \in [0,1]^K$: optimistic prediction for $\ell(t)$
- $\hat{\ell}_t \in \mathbb{R}^K$: unbiased estimator of ℓ_t
- ψ_t : convex regularization function

• 0

Converges to μ_i

ptimistic prediction: empirical mean of observed data of losse
$$m_i(t) = \frac{\frac{1}{2} + \sum_{s=1}^{t-1} \mathbf{1}[I(s)=i]\ell_i(s)}{1 + \sum_{s=1}^{t-1} \mathbf{1}[I(s)=i]}$$

- Optimistic follow the regularized leader (cf. [Rakhlin & Sridharan, 2013], [Wei & Luo, 2018])
 - For each t, choose $I(t) \in [K]$ according to the distribution p(t) such that

$$p(t) \in \arg\min_{p \in \mathcal{P}_K} \left\{ \left| \frac{m(t)}{m(t)} + \sum_{s=1}^{t-1} \hat{\ell}_s, p \right| + \frac{\psi_t(p)}{\psi_t(p)} \right\}$$

- $m(t) \in [0,1]^K$: optimistic prediction for $\ell(t)$
- $\hat{\ell}_t \in \mathbb{R}^K$: unbiased estimator of ℓ_t
- ψ_t : convex regularization function

Converges to μ_i

- **Optimistic prediction**: empirical mean of observed data of losse $m_i(t) = \frac{\frac{1}{2} + \sum_{s=1}^{t-1} \mathbf{1}[I(s)=i]\ell_i(s)}{1 + \sum_{s=1}^{t-1} \mathbf{1}[I(s)=i]}$
- Unbiased estimator: $\hat{\ell}_i(t) = m_i(t) + \frac{\mathbf{1}[I(t)=i]}{p_i(t)} \left(\ell_i(t) m_i(t)\right)$ <u>Reduce variances using $\mathbf{m}_i(t)$ </u>

Optimistic follow the regularized leader

• For each t, choose $I(t) \in [K]$ according to the distribution p(t) such that

$$p(t) \in \arg\min_{p \in \mathcal{P}_{K}} \left\{ \left| m(t) + \sum_{s=1}^{t-1} \hat{\ell}_{s}, p \right| + \psi_{t}(p) \right\}$$

• ψ_t : convex regularization function

- **Regularization function**: $\psi_t(p) = \sum_{i=1}^K \beta_i(t) \phi(p_i)$, where
 - $\phi(x) = x 1 \log x + \log T \cdot (x + (1 x) \log(1 x))$

Log-barrier regularization cf. BROAD [Wei&Luo, 2018], LB-INF [Ito, 2021] Entropy regularization for (1 - x):

used to handle the impact of the variance of the optimal arm

Optimistic follow the regularized leader

• For each t, choose $I(t) \in [K]$ according to the distribution p(t) such that

$$p(t) \in \arg\min_{p \in \mathcal{P}_{K}} \left\{ \left| m(t) + \sum_{s=1}^{t-1} \hat{\ell}_{s}, p \right| + \psi_{t}(p) \right\}$$

• ψ_t : convex regularization function

- Regularization function: $\psi_t(p) = \sum_{i=1}^K \beta_i(t) \phi(p_i)$, where
 - $\phi(x) = x 1 \log x + \log T \cdot (x + (1 x) \log(1 x))$

Log-barrier regularization cf. BROAD [Wei&Luo, 2018], LB-INF [Ito, 2021] Entropy regularization for (1 - x):

used to handle the impact of the variance of the optimal arm

• $\beta_i(t)$: adaptively chosen based on squared prediction error $\left(\ell_{I(s)} - m_{I(s)}(s)\right)^2$ of m(s) $\rightarrow \sigma_{I(s)}^2$

Outline

- Introduction
- Problem setting
- Regret bounds
- Proposed algorithm
- Regret Analysis
- Numerical examples

Regret analysis: stochastic regime

• Definition of ψ_t and a standard analysis technique for OFTRL yield:

Lem. I For sufficiently large T,
$$R(T) \simeq O\left(\sum_{i \neq i^*} \sqrt{\sum_{t=1}^T \mathbb{1}[I(t) = i[(\ell_i(t) - m_i(t))^2]} \operatorname{og}(T)\right)$$

• Definition of m(t) yields:

Lem. 2
$$\mathbb{E}\left[\sum_{t=1}^{T} \mathbb{1}[I(t) = i(\ell_i(t) - m_i(t))^2] = O\left(\sigma_i^2 \mathbb{E}\left[\sum_{t=1}^{T} p_i(t)\right] + \log(T)\right)\right]$$

• Combining the above two lemmas and Jensen's inequality, we obtain:

Prop. I For sufficiently large T,
$$R(T) = O\left(\sum_{i \neq i^*} \sqrt{\sigma_i^2} \mathbb{E}\left[\sum_{t=1}^T p_i(t)\right] \log(T) + K \log(T)\right)$$

Regret analysis: stochastic regime

Prop. I For sufficiently large T, $R(T) = O\left(\sum_{i \neq i^*} \sqrt{\sigma_i^2 \mathbb{E}[\sum_{t=1}^T p_i(t)] \log(T)} + K \log(T)\right)$

Self-bounding technique cf. [Zimmert & Seldin, 2021], [Wei & Luo, 2018], [Gaillard+, 2014]

Thm. I
$$R(T) = O\left(\sum_{i \neq i^*} \left(\frac{\sigma_i^2}{\Delta_i} + 1\right) \log(T)\right)$$

Regret analysis: adversarial regime

- Definition of ψ_t and a standard analysis technique for OFTRL yield:

Lem. I For sufficiently large
$$T$$
, $R(T) \simeq O\left(\sum_{i \neq i^*} \sqrt{\sum_{t=1}^T \mathbb{1}[I(t) = i](\ell_i(t) - m_i(t))^2 \log(T)}\right)$

• Definition of m(t) yields:

Lem. 3 It holds for any
$$\ell^* \in [0,1]^K$$
 that

$$\mathbb{E}\left[\sum_{t=1}^T \mathbb{1}[I(t) = i](\ell_i(t) - m_i(t))^2\right] = \mathbb{E}\left[\sum_{t=1}^T \mathbb{1}[I(t) = i](\ell_i(t) - \ell_i^*)^2\right] + O(K\log(T))$$
Consequently,

$$\mathbb{E}\left[\sum_{t=1}^T \mathbb{1}[I(t) = i](\ell_i(t) - m_i(t))^2\right] = \min\{Q_{\infty}, L^* + R(T), T - L^* - R(T)\} + O(K\log(T))$$

• Combining the above two lemmas I and 3, we obtain $R(T) = O\left(\sqrt{K\min\{Q_{\infty}, L^*, T - L^*\}\log(T)} + K\log(T)\right)$

Numerical Comparison with Thompson Sampling & Tsallis-INF w/ RV-estimator Setting: Bernoulli bandits with K = 5

Experiment I.

- Stochastic regime
- $\mu = (0.5, 0.9, \dots, 0.9)$ \rightarrow small σ_i^2

Experiment 2.

• Stochastic regime

•
$$\mu = (0.5, 0.55, ..., 0.55)$$

 $\rightarrow \text{large } \sigma_i^2$

Experiment 3.

- Stochastically constrained adversarial regime
- Δ = 0.1(same as Figure 3 in [Zimmert & Seldin 2021])

Conclusion

• OFTRL with adaptive learning rate achieves

stochastic regime
$$(C = 0)$$

 \cap
stochastic regime w/ adversarial constraints
 $(C = \sum_{t=1}^{T} ||\bar{\ell}_t - \ell_t||_{\infty})$
 \cap
adversarial regime
 $O\left(\sqrt{K\min\{T, L^*, Q_{\infty}\} \log T}\right)$
 \subset
adversarial regime w/ self-bounding constraints
 $O\left(\sum_{i \neq i^*} (\frac{\sigma_i^2}{\Delta_i} + 1)\log T + \sqrt{C\sum_{i \neq i^*} (\frac{\sigma_i^2}{\Delta_i} + 1)\log T}\right)$
 σ_i^2 : variance of arm i

The leading constant of the regret upper bound is close to the lower bound $(gap \approx 2)$

Conclusion

• OFTRL with adaptive learning rate achieves

The leading constant of the regret upper bound is close to the lower bound $(gap \approx 2)$

- Open questions and future directions:
 - Can we achieve a gap < 2 while preserving BOBW and/or corruption-robustness?
 - Can we remove the assumption that the optimal arm is unique?