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• We consider the multi-armed bandit problem with 𝐾 arms and 𝑇 rounds

• We propose a best-of-both-worlds algorithm for three regimes:

• Stochastic regime: 𝑅 𝑇 = 𝑂 ∑!"!∗
#"
#

$"
+ 1 log 𝑇

• Δ!: suboptimality gap of arm 𝑖
• 𝜎!%: variance of arm 𝑖

• Adversarial regime: 𝑅(𝑇) = 𝑂 𝐾 log 𝑇 ⋅ min 𝑇, 𝐿∗, 𝑄'
• 𝐿∗ = min

!∗∈ )
𝐄 ∑*+,- ℓ!∗(𝑡) :  cumulative loss for the optimal arm

• 𝑄' = min
.ℓ
𝐄 ∑*+,- ℓ 𝑡 − =ℓ '

%
:  variation of loss (w.r.t. 𝐿'-norm)

• Stochastic regime w/ adversarial corruption:

𝑅 𝑇 = 𝑂 ∑!"!∗
#"
#

$"
+ 1 log 𝑇 + 𝐶 ∑!"!∗

#"
#

$"
+ 1 log 𝑇

• 𝐶: corruption level

Summary
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Multi-armed bandits

• 𝐾: the number arms;    𝐾 = 1,2, … , 𝐾 : set of arms

• 𝑇: the number of rounds

• For 𝑡 = 1,2, … , 𝑇:
• The environment chooses a loss vector ℓ 𝑡 = ℓ! 𝑡 , ℓ" 𝑡 , … , ℓ# 𝑡 $ ∈ 0, 1 #

• The player chooses an arm 𝐼 𝑡 ∈ 𝐾 and observes the incurred loss ℓ% & 𝑡

• Performance metric: the regret 𝑅(𝑇) defined as

𝑅!∗ 𝑇 = 𝐄 %
"#$

%

ℓ& " 𝑡 −%
"#$

%

ℓ!∗ 𝑡 , 𝑅 𝑇 = max
!∗∈[)]

𝑅!∗(𝑇)
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Three regimes for environment

• Stochastic regime:
• Assume ℓ 𝑡 is i.i.d. for 𝑡 = 1,2, … , 𝑇
• 𝜇( = 𝐄 ℓ( 𝑡 , 𝑖∗ ∈ arg min

(∈ #
𝜇( , Δ( = 𝜇( − 𝜇(∗ , 𝜎(" = 𝐸[ ℓ( 𝑡 − 𝜇( "]

• We assume the best arm 𝑖∗ is unique, i.e., Δ( > 0 for all 𝑖 ≠ 𝑖∗

• Adversarial regime:

• The environment chooses ℓ 𝑡 ∈ 0,1 depending on ℓ 𝑠 , 𝐼 𝑠 *+!
&,!

• Stochastic regime with adversarial corruption:
• The loss is expressed as ℓ 𝑡 = ℓ- 𝑡 + 𝑐 𝑡 ∈ 0,1 #

• ℓ- 𝑡 ∈ 0,1 # :  stochastic (i.i.d.)

• 𝑐 𝑡 ∈ −1,1 # :  adversarial  (depending on ℓ- 𝑠 , 𝑐 𝑠 , 𝐼 𝑠 *+!
&,!

and ℓ′(𝑡))
• Corruption level 𝐶 ≔ ∑&+!. 𝐄 𝑐 𝑡 /

• 𝐶 = 0 ⇒ stochastic regimes,   𝐶: unbounded ⇒ adversarial regimes
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Regret bounds: existing studies
11

Stochastic Adversarial Stochastic with adversarial corruption

UCB-V
[Audibert+, 2009]

𝑂 ∑$:&!'(
)!
"

&!
+ 1 log 𝑇 NA NA

Variance-dependent 
regret bound
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&!
log 𝑇

Regret bounds: existing studies
13

Best of both worlds Robust against corruption

Variance-dependent 
regret bound



Stochastic Adversarial Stochastic with adversarial corruption

UCB-V
[Audibert+, 2009]

𝑂 ∑$:&!'(
)!
"

&!
+ 1 log 𝑇 NA NA

Tsallis-INF
[Zimmert&Seldin, 
2021]

𝑂 ∑":$!%&
'
$!
log 𝑇 𝑂 𝐾𝑇 𝑂 ∑$:&!'(

*
&!
log 𝑇 + 𝐶 ∑$:&!'(

*
&!
log 𝑇

LB-INF 
[Ito, 2021]

𝑂 ∑"("∗
'
$!
log 𝑇 𝑂 𝐾 log 𝑇 ⋅min 𝑇, 𝑳∗, 𝑸+, 𝑽𝟏 𝑂 ∑$-$∗

*
&!
log 𝑇 + 𝐶 ∑$-$∗

*
&!
log 𝑇

Regret bounds: existing studies

• 𝐿∗ = min
"∗∈ *

𝐄 ∑+,'- ℓ"(𝑡) :  cumulative loss for the optimal arm

• 𝑄. = min
/ℓ
𝐄 ∑+,'- ℓ"∗ 𝑡 − 4ℓ .

1 :  variation of loss (w.r.t. 𝐿.-norm)

• 𝑉' = 𝐄 ∑+,'-2' ℓ 𝑡 − ℓ 𝑡 − 1 ' :  path-length (w.r.t. 𝐿'-norm)
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Best of both worlds

Data-dependent 
regret bound

Robust against corruption

Variance-dependent 
regret bound



Can we go further?

In many applications such as recommender systems…

• Positive label feedback (e.g., to purchase or click) is rare 
⇒ small variance 𝜎78
⇒ algorithm w/ variance-dependent regret bound
can perform very well

• Losses / rewards are not always i.i.d.
⇒ BOBW and corruption-robustness are important

15

Research question: any BOBW algorithm with a variance-dependent regret bound?



Regret bounds: this study

Stochastic Adversarial Stochastic with adversarial corruption

UCB-V
[Audibert+, 2009]

𝑂 ∑$:&!'(
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&!
+ 1 log 𝑇 NA NA
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𝑂 ∑"("∗
'
$!
log 𝑇 𝑂 𝐾 log 𝑇 ⋅min 𝑇, 𝐿∗, 𝑄+, 𝑉* 𝑂 ∑$-$∗

*
&!
log 𝑇 + 𝐶 ∑$-$∗

*
&!
log 𝑇

LB-INF-V
(This work) 𝑂 ∑"("∗

3!
#

$!
+ 1 log 𝑇 𝑂 𝐾 log 𝑇 ⋅min 𝑇, 𝐿∗, 𝑄+ 𝑂 ∑$%$∗

&"
#

'"
+ 1 log 𝑇 + 𝐶 ∑$%$∗

&"
#

'"
+ 1 log 𝑇

• This study proposes the first BOBW algorithm with variance-dependent regret bounds
• The proposed algorithm (LB-INF-V) is corruption-robust and has data-dependent regret bounds
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Regret bounds: this study
17

Stochastic Gap from lower bound Adversarial

UCB-V
[Audibert+, 2009]

∑":$!%& 10 3!
#

$!
+ 20 log 𝑇 ≈ 5 NA

Tsallis-INF
[Zimmert&Seldin, 2021]

≈ ∑":$!%&
'
$!
log 𝑇 ≈ 2 𝑂 𝐾𝑇
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[Ito, 2021]

≈ 36∑"("∗
'
$!
log 𝑇 ≈ 72 𝑂 𝐾 log 𝑇 ⋅min 𝑇, 𝐿∗, 𝑄+, 𝑉*

LB-INF-V
(This work) ≈ ∑"("∗max 4 3!

#

$!
, 2 log 𝑇 ≈ 2 𝑂 𝐾 log 𝑇 ⋅min 𝑇, 𝐿∗, 𝑄+

The leading constant of the regret upper bound 
is close to the lower bound  (gap ≈ 𝟐)



Regret bounds: this study
18

Stochastic Gap from lower bound Adversarial

UCB-V
[Audibert+, 2009]

∑":$!%& 10 3!
#

$!
+ 20 log 𝑇 ≈ 5 NA

Tsallis-INF
[Zimmert&Seldin, 2021]

≈ ∑":$!%&
'
$!
log 𝑇 ≈ 2 𝑂 𝐾𝑇

LB-INF 
[Ito, 2021]

≈ 36∑"("∗
'
$!
log 𝑇 ≈ 72 𝑂 𝐾 log 𝑇 ⋅min 𝑇, 𝐿∗, 𝑄+, 𝑉*

LB-INF-V
[This work]

≈ ∑"("∗max 4 3!
#

$!
, 2 log 𝑇 ≈ 2 𝑂 𝐾 log 𝑇 ⋅min 𝑇, 𝐿∗, 𝑄+

LB-INF-V-
mod
(This work)

≈ ∑"("∗max 8 3!
#

$!
, 4 log 𝑇 ≈ 4 𝑂 𝐾 log 𝑇 ⋅min 𝑇, 𝐿∗, 𝑄+, 𝑉*

• The leading constant of the regret upper bound is close to the lower bound  (gap ≈ 2)
• Modifications to the algorithm yield a path-length regret bound

in exchange for a larger constant
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Proposed algorithm

• Optimistic follow the regularized leader
• For each 𝑡, choose 𝐼 𝑡 ∈ 𝐾 according to the distribution 𝑝 𝑡 such that

𝑝 𝑡 ∈ arg min
0∈𝒫.

𝑚 𝑡 +E
2+,

*3,

Fℓ2 , 𝑝 + 𝜓* 𝑝

• 𝑚 𝑡 ∈ 0,1 ): optimistic prediction for ℓ 𝑡
• Fℓ* ∈ ℝ): unbiased estimator of ℓ*
• 𝜓*: convex regularization function

• Optimistic prediction: empirical mean of observed data of losse 𝑚! 𝑡 =
/
#4∑01/

23/ 𝟏 7 2 +! ℓ"(2)

,4∑01/23/ 𝟏[7 2 +!]

• Unbiased estimator: Fℓ! 𝑡 = 𝑚! 𝑡 + 𝟏 7 * +!
0" *

ℓ! 𝑡 − 𝑚! 𝑡

20

(cf.  [Rakhlin & Sridharan, 2013], [Wei & Luo, 2018])

Converges to 𝛍𝐢

Reduce variances using 𝐦𝐢 𝐭
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• Optimistic follow the regularized leader
• For each 𝑡, choose 𝐼 𝑡 ∈ 𝐾 according to the distribution 𝑝 𝑡 such that

𝑝 𝑡 ∈ arg min
0∈𝒫.

𝑚 𝑡 +E
2+,

*3,

Fℓ2 , 𝑝 + 𝜓* 𝑝

• 𝜓*: convex regularization function

• Regularization function: 𝜓* 𝑝 = ∑!+,) 𝛽!(𝑡)𝜙(𝑝!), where 
• 𝜙 𝑥 = 𝑥 − 1−log 𝑥 + log 𝑇 ⋅ 𝑥 + 1 − 𝑥 log 1 − 𝑥

• 𝛽! 𝑡 : adaptively chosen based on squared prediction error ℓ7 2 −𝑚7 2 𝑠
%

of 𝑚(𝑠)

Proposed algorithm
23

Log-barrier regularization
cf. BROAD [Wei&Luo, 2018], LB-INF [Ito, 2021]

Entropy regularization for 1 − x :
used to handle the impact of the variance of the optimal arm

→ 𝜎N O
P

𝑠 → ∞
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• Definition of 𝜓7 and a standard analysis technique for OFTRL yield:

Lemma 1: For sufficiently large 𝑇, we have 𝑅 𝑇 = 𝑂 𝐄 ∑$-$∗ ∑78*9 𝟏 𝐼 𝑡 = 𝑖 ℓ$(𝑡) − 𝑚$(𝑡) : log 𝑇

• Definition of 𝑚 𝑡 yields:

Lemma 2:  If 𝑚$ 𝑡 =
(
";∑)*(

+,( 𝟏 = > 8$ ℓ!(>)

*;∑)*(
+,( 𝟏[= > 8$]

,     𝐄 ∑78*9 𝟏 𝐼 𝑡 = 𝑖 ℓ$(𝑡) − 𝑚$(𝑡) : = 𝑂 𝜎$:𝐄 ∑78*9 𝑝$ 𝑡 + log 𝑇

• Combining the above two lemmas and Jensen’s inequality, we obtain:

Proposition 1: For sufficiently large 𝑇, we have  𝑅 𝑇 = 𝑂 ∑$-$∗ 𝜎$:𝐄 ∑78*9 𝑝$(𝑡) log 𝑇 + 𝐾 log 𝑇

Regret analysis: stochastic regime
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Regret analysis: stochastic regime
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Self-bounding technique
cf. [Zimmert & Seldin, 2021],

[Wei & Luo, 2018], [Gaillard+, 2014]

+



• Definition of 𝜓+ and a standard analysis technique for OFTRL yield:

Lemma 1: For sufficiently large 𝑇, we have 𝑅 𝑇 = 𝑂 𝐄 ∑"("∗ ∑+,'- 𝟏 𝐼 𝑡 = 𝑖 ℓ+" −𝑚+"
1 log 𝑇

• Definition of 𝑚 𝑡 yields:

Lemma 3:  If 𝑚" 𝑡 =
$
#5∑%&$

'($ 𝟏 8 9 ," ℓ!(9)

'5∑%&$'($ 𝟏[8 9 ,"]
, it holds for any ℓ"∗ ∈ [0,1] that 

∑+,'- 𝟏 𝐼 𝑡 = 𝑖 ℓ"(𝑡) − 𝑚"(𝑡) 1 ≤ ∑+,'- 𝟏 𝐼 𝑡 = 𝑖 ℓ"(𝑡) − ℓ"∗ 1 + 𝑂 log 𝑇 . Consequently,

𝐄[∑",'* ∑+,'- 𝟏 𝐼 𝑡 = 𝑖 ℓ"(𝑡) − 𝑚"(𝑡) 1] ≤ min{𝑄., 𝐿∗ + 𝑅- , 𝑇 − 𝐿∗ − 𝑅-} + 𝑂 𝐾 log 𝑇 .

• Combining the above two lemmas 1 and 3, we obtain

Regret analysis: adversarial regime
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Numerical Comparison with
Thompson Sampling & Tsallis-INF w/ RV-estimator

29

Experiment 1.
• Stochastic regime
• µ = (0.5,0.9, … , 0.9)
→ small σ<%

Experiment 2.
• Stochastic regime
• µ = (0.5,0.55, … , 0.55)
→ large σ<%

Experiment 3.
• Stochastically constrained 

adversarial regime
• Δ = 0.1(same as Figure 3

in [Zimmert & Seldin 2021])

Thompson sampling 
(TS)

TsallisINF-RV

LogBarrierINF-V
(LBINF-V)

TS

TsallisINF-RV
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Setting: Bernoulli bandits with K = 5



• OFTRL with adaptive learning rate achieves

• Open questions and future directions:
• Can we achieve a gap < 2 while preserving BOBW and/or corruption-robustness?
• Can we remove the assumption that the optimal arm is unique?

Conclusion
30

The leading constant of the regret upper bound 
is close to the lower bound  (gap ≈ 𝟐)
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