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Taira Tsuchiya

® )nd year Ph.D. student at Kyoto University & RIKEN AIP
® Advised by Junya Honda

® Research interests
> Wide range of statistical learning theory

> Online-decision making problem, especially on bandits!



3/ 53
Today’s Talk

|. Thompson sampling for stochastic partial monitoring (NeurlPS2020)
> available at https://arxiv.org/abs/2006.09668

2. A best-of-both-worlds algorithm with variance-dependent regret bounds (COLT2022)
> available at https://arxiv.org/abs/2206.068 10

® Advertisement:

> “Globally” optimal best arm identification for fixed-budget setting
> available at https://arxiv.org/abs/2206.04646



https://arxiv.org/abs/2006.09668
https://arxiv.org/abs/2206.06810
https://arxiv.org/abs/2206.04646
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Analysis and Design of Thompson Sampling for
Stochastic Partial Monitoring (NeurlPS$S2020)

Taira Tsuchiya 2, Junya Honda 23, Masashi Sugiyama 23
|. The University of Tokyo, 3. RIKEN AIP
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Partial Monitoring Example: Dynamic Pricing

Player (= seller) opportunity loss feedback

User’s outcome (1)

=1 (= evaluation price)

l | I > :
\

Hotel owner PO -340=950
HOTEL Use if selling price < $90
t=2
' $c (const.)
decu;lre:n:h{eﬁl:fe’ of room (-+ $50 — $80 < $0) No-buy
Use if selling price < $50
e w06

Only feedback (Buy or No-Buy) is observable to the seller!

Q. Is it possible to maximize the total reward (= minimize the total loss) only with limited feedback?
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Partial Monitoring has Many Applications

® Online learning with full information
(the loss is directly observed)

® Linear bandits
® Heteroscedastic bandits
® Dueling bandits

® Combinatorial bandits
(both w/ (full-)bandits and semi-bandits feedback)

® Dynamic pricing A variety of
online-decision making problems
* linear bandits
o * dueling bandits
Partial monitoring game ¢ dynamic pricing
* |abel efficient prediction

® Label efficient prediction
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Research Question

® Partial Monitoring

> General Framework for online-decision making problem with limited feedback

® Thompson Sampling
» (Empirically) one of the most promising policies for various online decision-making problems

» Handles the exploration/exploitation tradeoff by posterior sampling

A variety of
online-decision making problems

Th S li * linear bandits
— * dueling bandits

Partial monitoring game ¢ dynamic pricing
* |abel efficient prediction
‘ eeoe

Empirically good performance

How to apply?
Theoretically justifiable?
Empirically good?
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Outline | Thompson Sampling for Partial Monitoring

® |ntroduction - partial monitoring and research question
® Background of partial monitoring

® Existing Thompson sampling based approach

® Proposed algorithms

® Regret upper bound

® Experiments

® Conclusion
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Partial Monitoring Formulation

® Partial monitoring game G = (L, H) with N actions and M outcomes

e loss matrix L = (Lﬂ ) e RVM feedback matrix H = (h ) e VM (5 . set of feedback symbols)

® PM game For round [ = 1,...,T : '

1. Player selects action i(¢) € {1,..., N} and play the achon

1 Multip®) (0 € Py |

strategy prob. 3|mp|e

Player suffers a Ioss Liojiy cmd observe feedback i) o
L oo

2. Opponent selects outcome j(1

® Goal: minimize pseudo-regret (= maximize total rewards)

Reg(T) = thl Lz(t)p — Ll p ) w.l.o.g. action 1 is optimal
expected loss expected loss 7.- ith column of I
for taken actions for best action 1 .
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Example I : Dynamic PI"iCing N: the (discrete) range of selling price

M: the (discrete) range of evaluation price

® Partial monitoring game G = (L, H) with N actions and M outcomes

e Jloss matrix L € RYM feedback matrix H € XV (X : set of feedback symbols)

loss matrix (*) j>i
. - PR Pl IRV 012 3 4
outcome ~ P (strategy) o C (Oth@l’WiS@) C O 1 2 3
|P|uyer (= seller)l |Environmeni| opportunity loss feedback L = c ¢c 01 2
User’s outcome j(7)
=1 H I (= evaluation price) C C C O 1
i $90 — $40 = $50 c ¢c ¢ ¢ 0O
o ener ‘se"ing price $40‘ % BUY feed back matrix (*) ] <!
E-I?.-i! Use if selling price < $90 O (] > l) ] > 1
==a = hl’] { X  (otherwise) O 0000
d-'d- th- o of ¥ $c¢ (const.) e X O O O O
ecides the price of room : ) .. B -
from {$1..... $N) ‘sellmg price $80 (- $50 — $80 < $0) H=1 X X O O O
Use if selling price < $50 x X X O O
f = e
BE |y {Buy(()), No-Buy( x )} x x x x 0O
i<i

(*row: selling price, column: outcome)



11/ 53
Example 2: Label Efficient Prediction (cesianch+ 2005

® Player predicts label (positive or negative) of the item in online manner
® There possible actions when labeling items:
|. label as positive (P)

2. label as negative (N)

3. ask a expert (The true label is given.)

0  cnop None None
[, = H =
PN 0 cnop > 0 : failure cost of N to P None None
q q cp_n > 0 : failure cost of P to N P N

g > 0 : cost of asking the expert

Nicold Cesa-Bianchi, Gébor Lugosi, and Gilles Stoltz. Minimizing regret with label efficient prediction. IEEE Transactions on Information Theory, 51(6):2152-2162, 2005.
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Classification of Partial Monitoring Games isarisk- 2010, 20m]

Q. Can we achieve sub-liner regret for any PM game G = (L, H) ?

A. No.VWe need some conditions.

e.g.,

trivial: R(G) = 0

PM easy: R(G) = @(ﬁ )

games
hard: R (G) = O(T*3)

hopeless: R(G) = Q(T)

\

L

S—

0 1
1 O

e PM games fall into four classes based on their minimax regret R(G) = int SUP ,e 9,

locally
observable
games

globally

observable

games

(a 4)

_p[RT(*QL p)]

Taking pair of actions i,j € [N] is
enough to know the value of

-
(Li—Ly)'p (intuitively)

Taking pair of actions i, ] € [ V] can be
NOT enough to know

(L; — Lj) 'p

Gdbor Barték, David Pél, and Csaba Szepesvéri. Toward a classification of finite partial-monitoring games. In Algorithmic Learning Theory, pages 224-238, 2010.
Gdbor Bartdék, David Pél, and Csaba Szepesvdri. Minimax regret of finite partial-monitoring games in stochastic environments.

In the 24th Annual Conference on Learning Theory, volume 19, pages 133-154, 2011.
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Outline | Thompson sampling for Partial Monitoring

® Introduction - partial monitoring and research question
® Background of partial monitoring

® Existing Thompson sampling based approach

® Proposed algorithms

® Regret upper bound

® Experiments

® Conclusion
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How to use Thompson Sampling in Partial Monitoring!?

Target parameter: strategy p € &),
A naive application of Thompson sampling:

|. calculating posterior distribution for parameters

(p) 1= n(p| observed data(0)  #(p) [T exp (—n Py (a”1ISp) )

2. sampling target parameters from posterior distribution
sample p, ~ f(p)

3. deciding the best action (= arm) based on sampled parameters and take it
take action i(¢) := arg min. LTpt

1E|N]

expected loss

for action i
n. : the # of times action i was taken by time ¢

g{t) : empirical feedback dist. of action i at ¢
S. : signal matrix of action i (Appendix)
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Bayes-update Partial Monitoring (BPM-TS) ..ciabens 2014

® Track strategy (p*) estimate by Bayes-update with a Gaussian prior

® Assumption: the outcomes are generated from a Gaussian with covariance /;; and
unknown mean (actually follows Multi(p™))

& Fast computation
& One of the best experimental performances

Discrepancy from the exact posterior f,(p)
/V (some params at ) €——> ﬂ(P)HiileXP <_ni@KL (qi(t)HSip”

discrepancy

No theoretical analysis is given for TS setting

Hastagiri P Vanchinathan, Gébor Barték, and Andreas Krause. Efficient partial monitoring with prior information.
In Advances in Neural Information Processing Systems 27, pages 1691-1699, 2014.
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Accept-Reject Sampling

® A method to obtain i.i.d. samples from a certain complex distribution f(x)

® Prepare a proposal distribution g(x) and do the following:

|. Generate sample X ~ g(x) Easy to obtain samples

| X0 ——
2. Accept X with probability , Where R = sup, —

Rg(X) g(x)
3. Continue until getting accepted

® Need to prepare a tight proposal distribution

elec Rg(x)
accept J(x)

X ~ g(x) X



17/ 53
Proposed algorithm (TSPM) | Exact Posterior Sampling

|. Prepare a tight proposal distribution

_Gaussian distribution

N
Rﬂ(p)Hexp (—nl-qu.(t) — Sl-pHZ) (proposal distribution)
= V| Pinsker’s inequality

N
ﬂ(p)HeXP (_ni@KL (ql.(t)HSip)> (posterior distribution)
D i=1

2. Sampling from the Gaussian distribution restricted to probability simplex &,

Gaussian distribution
N

wp)] Jexe (~nllg” - sipI)

i=1
restricted to &,
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Summary of Proposed Method

Hard to directly sample target parameters from posterior distribution

., N

~

N
parameter p ~ ﬂ(p)HeXp -, Dy, (Cli(t)HSip)

N

=1
R .
Existing work  [Vanchinathan+ 2014] Ours (TSPM)
Approximate by Gaussian distribution Exact sampling by the tight proposal distribution
& Fast computation & Good empirical performance
Discrepancy from the exact posterior w/o much computational cost

No theoretical analysis is given for TS

Hastagiri P Vanchinathan, Gébor Barték, and Andreas Krause. Efficient partial monitoring with prior information.
In Advances in Neural Information Processing Systems 27, pages 1691-1699, 2014.
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Outline | Thompson Sampling for Partial Monitoring

® Introduction - partial monitoring and research question
® Background of partial monitoring

® Existing Thompson sampling based approach

® Proposed algorithms

® Regret upper bound

® Experiments

® Conclusion
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Logarithmic Regret Upper Bound A, N :the # of feedback and action,

A, : sub-optimality gap for action i
A= min A /]|
JFk
A :loss gap between action \and £,

Thm. (informal) 2 € R* :vector relating loss ajd feedback)

For any linear partial monitoring game with local observability,
the expected pseudo-regret of TSPM-Gaussian is bounded by

some problem-dependent constants dependence on
time horizon T

[4 The first logarithmic problem-dependent bound of TS for partial monitoring

[4 The first logarithmic bound of Thompson sampling for Linear Bandits!
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What’s New in Theoretical Analysis!?

® Have to handle the effect of non-interested actions

® Bound the regret for each sub-optimal action i € [N]\{1} (regret decomposition)

Reg(T) = Zie[N]\{l} (T+ 1)

of times to pull sub-optimal action i

_II—

Multi-armed bandits total #

n(u; | observed data(t)) —€————> m(u, | observed data(r))
independent for j # k

Partial monitoring ﬂ(P)HZ-\i CAP <_n@KL< (t)HSJp))

all actions except action i are of no-interest, but its statistic appear In posterior

Approach evaluate the worst case effect of non- mterested actlons
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Outline | Thompson Sampling for Partial Monitoring

® |ntroduction - partial monitoring and research question
® Background of partial monitoring

® Existing Thompson sampling based approach

® Proposed algorithms

® Regret upper bound

® Experiments

® Conclusion



Performance Comparison on Dynamic Pricing

® Substantially better performance than existing methods
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Frequency of Rejection in Accept-Reject Sampling

® Desirable Properties of Accept-Reject Sampling
|. Frequency of rejection does not increase as round proceeds. OK

2. Frequency of rejection does not increase as the support dimension M — 1 increases.

OK (by setting R to be small value)

N

W
o0
-

1500

1250

g
o
oN
S

[E—
S
S
(-}

—— TSPM (R=0.01)

—— TSPM (R=0.01) —— TSPM (R=0.01)

# of rejected times
o
# of rejected times
N
O
# of rejected times

(Ioca”y obse rvable gqme) TSPM (R=1.0) TSPM (R=1.0) 750 TSPM (R=1.0)
1.0 500
20
250
0.5 | M e A A A S
0 0
0 2500 5000 7500 10000 0 2500 5000 7500 10000 0 2500 5000 7500 10000
round 7 round T round 7’
N=M=73 N=M=5 N=M-="7

. —
posterior density !

Accept w.p. of const -

R - proposal dist. density

——————— R e e R N
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Conclusion | Thompson Sampling is useful in PM!

A variety of
online-decision making problems

h I; e linear bandits
Thompson Sampling e dueling bandits

Partial Monitoring game ¢ dynamic pricing
* label efficient prediction
. cee

Empirically good performance

How to apply?
Theoretically justifiable?
Empirically good?

BT = - Y ) LT = LT - LT - 7 P e LT - - . LT - P P - LT - _ = g s - - B P R
N SNy N~ Py S AP T - S el L o o et oo e o I N A P e e N Ry NS e, e S _ i A e At B B i P R R R S L S Y SR S C PR S

' Our contribution:
; |. A novel TS-based algorithm using a tight proposal distribution H
{2. First logarithmic regret upper bound both for PM and linear bandits ‘f
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Adversarially Robust Multi-Armed Bandit Algorithm
with Variance-Dependent Regret Bounds (COLT2022)

Shinji Ito I3, Taira Tsuchiya %43, Junya Honda 23
|. NEC Corporation, 2. Kyoto University, 3. RIKEN AIP
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Any Policy Optimal Both for Stochastic and Adversarial?

Stochastic regime J j Adversarial regime )
—| —| —| —

arm | arm 2 arm | arm 2
Ber(0.9) Ber(0.1) Ber(0.9) Ber(0.1)
N

&

A bad guy can exchange arms
at any time based on past history

Exp3

UCBI
# of trials T

# of trials 1

Q. Are there algorithm working well both for stochastic & adversarial w/o knowing regime?
If possible, can we make use of distributional information?
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Outline | Variance-Dependent BOBW Algorithm

® Introduction to best-of-both-worlds algorithms
® Super quick introduction on vanilla multi-armed bandits
® Background (existing approaches & intermediate regime)
® Tsallis-INF algorithm
® Our work

> Regret bounds on three regimes

> Preliminary (Optimistic FTRL)

> Proposed algorithm

» Numerical experiments

® Conclusion
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Stochastic Multi-armed Bandits

® Online decision making model with K unknown distributions (on [0,1] (*)) (P);=; g
(= arm, action)

' ' | | J.
—|

Arm | Arm 2
P1///i1 Py 1y

distribution
| expected loss

K}

Only the loss for selected arm (¢)
is observed

|. Player selects arm I(7) € {1,...,

2 Observe stochastlc Ioss of I(t) z,”t o Pl(t) |

® Goal: minimize (pseudo-)regret: Reg, =L [Z; (Hye) — ﬂi*)], i* = arg min,

® Need to handle & ex| loitation tradeoff

Pull the arm with large Pull the arm which looks optimal
uncertainty

*We consider losses instead of rewards in this talk
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Algorithm for Stochastic Regime | UCB

® UCB algorithm : optimistically estimate the reward (= negative of the loss) of arms
[Aver+ 2002]

Pull the arm with the highest optimistically estimated rewards UGB =1) |

exploration term : The fewer the # of
times an arm has been pulled so far,
the more likely it is to be pulled.

A log T
UCB,¢t—-1):=p4(—1)+

reward mean

regret

i 1 S
plr—1) = NG—1) ; fig 1[i(s) = ]

UCB O(log T)

o | o horizon 1T
P. Auer, N. Cesa-Bianchi, & P. Fischer. Finite-time Analysis of the Multiarmed Bandit Problem. Machine Learning, 2002.
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Adversarial Multi-armed Bandits

Adversarial bandits: the losses for each step ¢, € [0,1]% are completely arbitrary

Stochastic bandits: the losses for each step foIIow the distribution (P )l ... xgonlO1]

Adversary selects Iosses L”l, .. £ -C [() l]K
For roundfr=1,...,T:
|. Player selects arm I(¥) € {1,..., K}

2. Observe loss £, ;;) € [0,1] (adversarial)
Observe stochastic loss of /(¢) from P, (stochastic)]

UCB fails!

® (Goal: minimize the pseudo-regret UCB Q(T)

T
Reg, = [t th,l(t) —lIél[iKn]Zf”
=1

horizon T
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Algorithm for Adversarial Regime | Exp3

® Exp3 (Exponential-weight algorithm for exploration & exploitation) algorithm [Aver+ 2002]

For roundr=1,...,7T:

|.Draw arm I(¢) € {1,..., K} from distribution (p(?));,

—1
p;(t) x exp ( 2&1-)
s=1

sum of estimated losses so far

2. Observe loss 7, ;, € [0,1] horizon T

3. Estimate the loss for each arm

ft,i er o
2“: {% Ifl—](t)

0 otherwise

Importance-weighted estimator
— Unbiased estimator of ¢, :E, ,,[¢] =7,

P. Auer, N. Cesa-Bianchi, Y. Freund, & R. E. Schapire. The non-stochastic multi-armed bandit problem. SIAM Journal on Computing, 2002.
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All You Need is Exp3?

® No. Exp3 is not optimal for stochastic regimes

stochastic regime adversarial regime

regret

UCB (7))

Exp3 O(ﬁ)
UCB O(log T')

Exp3 O(\/T)

horizon 1 horizon T

Q. Is it possible to achieve the optimality in both regimes
without knowing the underlying regime (= best-of-both-worlds)!
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Outline | Variance-Dependent BOBW Algorithm

® Introduction to best-of-both-worlds algorithms
® Super quick introduction on vanilla multi-armed bandits
® Background (existing approaches & intermediate regime)
® Tsallis-INF algorithm
® Our work

> Regret bounds on three regimes

> Preliminary (Optimistic FTRL)

> Proposed algorithm

» Numerical experiments

® Conclusion
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Existing Best-of-Both-Worlds Algorithms

e o log T
Def. Optimal(*) in stochastic regime < Reg.. = O(Z N )

i#it
Optimal in adversarial regime < Reg,. = O(y/KT)

® Assume stochastic environment and check if the this assumption is satisfied

> If it is determined that not satisfied, move to an algorithm for adversarial regime
[Bubeck & Slivkins 2012, Auer & Chiang 2016]

stochastic: optimal, adversarial: near-optimal

® Assume adversarial environment, and adopt to the stochastic environment if it’s easy
[Seldin & Slivkins 2014, Seldin & Lugosi 2017]

stochastic: near-optimal O(polylogT’), adversarial: optimal

S’ebastien Bubeck and Aleksandrs Slivkins. The best of both worlds: Stochastic and adversarial bandits. COLT, 2012.

Peter Auer and Chao-Kai Chiang. An algorithm with nearly optimal pseudo-regret for both stochastic and adversarial bandits. COLT, 2016.

Yevgeny Seldin and Aleksandrs Slivkins. One practical algorithm for both stochastic and adversarial bandits. ICML, 2014.

Yevgeny Seldin and G’abor Lugosi. An improved parametrization and analysis of the EXP3++ algorithm for stochastic and adversarial bandits. COLT, 2017.
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FTRL with |/2-Tsallis Entropy achieves Both Optimality!

[Zimmer & Seldin, 2021]

® Follow-the-Regularized-Leader (FTRL)

P2 ‘@K
> Select arm [(7) based on distribution p, € &, defined by:

sum of estimated losses convex regularization function

. -1 2
p, € argmin,cp (37 £, p) + wi(p)

Convex regularizer determines the behavior

/. € RX ; unbiased estimator of £, of arm selection probability p,
especially around the border

® FTRL with |/2-Tsallis entropy (with a certain learning rate) achieves the BOBW

a— 0 . S ) e
log-barrier potential Z — log(w,) S ey
° l: 1 l 0.9-Tsallis entropy
a- I sallis entropy

" —
S — —
" — — —

- N —.
N ——
s - N — — . —

.
—~—
" —
— —
" — —
- N — — —

a— 1 negative Shannon entropy Zlel w;log(w;)

 —
——
" e — —

J. Zimmert and Y. Seldin. Tsallis-INF: An optimal algorithm for stochastic and adversarial bandits. Journal of Machine Learning Research, 22(28):1-49, 2021.
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Intermediate between Stochastic and Adversarial

® Adversarial bandits: Too pessimistic = Any practical regimes!

® Intermediate regime between stochastic & adversarial

> Stochastically constrained adversarial regime: [Wei & Luo 2018]
losses are drawn from distribution w/ fixed gaps & losses are allowed to change

l,]

A her aff iformly the will
_[fti _ I’ﬂtj] — A weather affects uniformly the will to buy

> Stochastic regime with adversarial corruptions [Lykouris & Mirrokni 2018] 5

Losses generated from -

Z Z adversarial noise
- - — ‘o —_— = ‘e
stochastic regime (*) LT (fl, ’ KT) LT (fl’ ’ fT) Adversarial reviews or clicks

not observed

> (Adversarial regime with a self-bounding constraint) [zinmer & Seldin, 20211

* General regimes including above stochastic, above two, & adversarial regimes

Chen-Yu Wei and Haipeng Luo. More adaptive algorithms for adversarial bandits. COLT, 2018.
Thodoris Lykouris, Yahab Mirrokni, and Renato Paes Leme. Stochastic bandits robust to adversarial corruptions.STOC, 2018.
J. Zimmert and Y. Seldin. Tsallis-INF: An optimal algorithm for stochastic and adversarial bandits. Journal of Machine Learning Research, 22(28):1-49, 2021.

(*) More general model
can be considered
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Regret Upper Bounds of Tsallis-INF Algorithm

® Follow-the-Regularized-Leader w/ |/2-Tsallis entropy achieves the Best-of-Both-Worlds!

stochastic regime (C =0) «UCB

N
stochastically constrained adversarial regime : :
(C =0 adversarial regime w/
ﬂ_ ) a self-bounding constraint
stochastic regime V\%/ adversarial corruptions loo T
(C=3_ 17, ~ ) ol ¥ ==+c
N T A

adversarial regime  «Exp3
OW/ KT)
A,

Q. Truly “optimal” bound for stochastic regime is e.g., O (Zi;éi* 0 log T).
inf

s it possible to use distributional information to obtain better bounds?
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When is Distributional Information Useful?

® Maximizing the Click-Through Rate (CTR) using multi-armed bandits

_ * Running a website and try to let the users click ads
https://SNS.com e Want to maximize the CTR

— Ad position 2 .
S — e CTRisaround 1.0 to 10.0 % (Can be much more smaller!)
- e Then, the variance of arm i is 61.2 ~ (.01 ~ 0.1
Ad position 3 | | :
* If we could obtain the regret depending on o7,

we would reduce the regret to 1% ~ 10%)!
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Outline | Variance-Dependent BOBW Algorithm

® Introduction to best-of-both-worlds algorithms

® Super quick introduction on vanilla multi-armed bandits
® Background (existing approaches & intermediate regime)
® [sallis-INF algorithm

® Our work
> Regret bounds on three regimes
» Preliminary (Optimistic FTRL)
» Proposed algorithm

» Numerical experiments

® Conclusion
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Regret Bounds: Existing Studies

Variance-dependent bound
Stochastic Adversarial Stochastic with adversarial corruptions
Robust against corruption

UCB-V
[Audiber+ 2009]

Tsallis-INF
[Zimmert+ 2021]

LB-INF
[lto, 2021]

T

e cumulative loss for the optimal arm: L* = minie[K] Zt

—1 fl(t) = [OaT]

e empirical variation of loss vectors: O = min;_g« th=1 12(t) = £||%, € [0,T/4]

e path-length of loss vectors: V| = Zth_ll \£(r) — £+ 1)||; € [0,T]
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Regret Bounds: This Study

Stochastic Adversarial Stochastic with adversarial corruptions
UCB-V o7
[Audiber+ 2009] O( Zi!Ai>O (X 1) log T) NA NA
Tsallis-INF ( ) < 1 )
Zimmert+ 2021] O\ Ziapo 3 log T) O\VAT O( X ps03 logT+ \/CZZ-:APO 5 logT
LB-INF 0( logT) 0<\/Km1n{T L* Q. V] 10gT> 0(2 10gT+ C), logT>
[lto, 2021] FirA ) AV T amaaawiiaas ] £ A, i#i% A,
LB-INF-V ( - > ( ( ) ( 52 > )
(This work) 0( it ( ) 10gT> O \/Kmln{T LQ} log T O ZlA o0 + 1) logT+ ZlA 0 +1)logT

[4] The first BOBW algorithm w/ variance-dependent bounds
[4] Proposed algorithm is & data-dependent
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Regret Bounds: The Leading Constant Factor is Small!

Stochastic Gap from lower bound Adversarial
[Lii?il-a\elﬁ 20091 O Ziane (Z—z +1)logT) =5 NA
Zmmert2021] = Ziao; 1087 2 o(VKT)
tho-llzNonﬂ ~ 36 Zi#i* ALZ- log T ~ 72 0<\/Kmin{T, L*,Q._,V,} log T)
:-fl:il:.vt;\r,k) ~ D iiape MAX {42—? 2} logT  ~ 7 0<\/Kmin{T, L* 0} log T>

The leading constant of the regret upper bound is
close to the lower bound (gap ~ 2)
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Regret Bounds: LB-INF-V with Path-Length Bound

Stochastic Gap from lower bound Adversarial
ti\fi‘)\:ﬁ 20091 O Ziasa (Z—z +1)logT) =5 NA
Zmmerts 2021) = Ziapos 08T 2 o(VKT)
hi-llzNoFm] ~ 36 Zi#* ALZ- log T ~ 72 0<\/Kmin{T, L*,Q.,V,} log T)
t?l;ils:qvt;\r’k) Qe AX {42—? 2} log T ~ ) 0<\/Kmin{T, L*,Q.} log T>
t?l;lls:qvt;\r"l’() Qs TAX {SZ—i, 4} log T ~ 4 O<\/Kmin{T, L*,0.,V,} log T)

® Modifications to the algorithm yield a path-length regret bound
in exchange for a larger constant
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O Pti m iStic FTRL [Rakhlin & Sridharan, 2013]

® Follow-the-Regularized-Leader (FTRL)

Pry2 g)k
> Select arm [(¢) based on distribution p.(r) € &, defined by:

sum of estimated rewards  convex regularization function

—1
p, € argmin, ., (X £,.p) + wi(p)
z/”s € R* : unbiased estimator of £,

® Optimistic FTRL: optimistic prediction of £(#) + FTRL

> The arm selection probability is replaced with
m(t) € [0,1]% : optimistic prediction of Z(t)

1 ~
p, € argmin,c g (m(t) + Y. _ £ p) + wp)

Useful when deriving data-dependent regret bound!

Alexander Rakhlin and Karthik Sridharan. Online learning with predictable sequences. In Conference on Learning Theory, pages 993-1019, 2013a.
Sasha Rakhlin and Karthik Sridharan. Optimization, learning, and games with predictable sequences. In Advances in Neural Information Processing Systems, pages

3066-3074, 2013b.
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Proposed Algorithm: LB-INF-V

® Optimistic FTRL: Reduce variances in unbiased estimator for loss vectors

> Arm selection probability is replace with

p; € argmin, g (m(t) + Y _ D) + W)

m(f) € [0,1]% : optimistic prediction of Z(t)

convex regularization function

» Optimistic prediction m(t) € R*: empirical mean of observed data

— + Z AUGs) = i1 Z(s)

m(1) = converges to y,

1 + ZS ALGs) = i]

> Unbiased estimator z?t e R*:

20 = mt) + D=1 4y o)

pi(t) Reduce variances using (/)




Proposed Algorithm: LB-INF-V

® Optimistic FTRL: Reduce variances in unbiased estimator for loss vectors

> Arm selection probability is replace with

: _1 »
P: c arg mlnpeg’K<m(t) T 22:1 fs,p> T %(p)

m(f) € [0,1]% : optimistic prediction of Z(t)

convex regularization function

> Regularization function is y/(p) = Zlel p.(H)p(p;) with
e o(x)=x—1—-1og(x)+ log(T) - (x+ (1 —x)log(1 — x))
Log-barrier regularization Entropy regularization function for (1 — x)

used in BROAD, LB-INF used to handle the impact of the variance of the optimal arm
[Wei & Luo, 2018, lto, 2021]

e p{1) :adaptively chosen based on squared prediction error (m, (1) — ¢ I(t)(t))z of my,(7)

2
— GI(S) as § & OO

C.-Y. Wei and H. Luo. More adaptive algorithms for adversarial bandits. In Conference on pages 1263-1291, 2018.
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S. Ito. Parameter-free multi-armed bandit algorithms with hybrid data-dependent regret bounds. In Conference on Learning Theory, pages 2552-2583. PMLR, 2021b.
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Regret Analysis: Stochastic Regime

® Definition of the regularization function v, and standard technique of OFTRL yields:

Lem. | For sufficiently large 7, R(T) =~ O (Zi#i*\/z; 1[(t) = i](Z(1) — ml-(t))zlog(T))

® Definition of m(¥) yields:

XL O = i) - m0) PELY,, pi(0] + log(T))

- '[Z;Pi(t)] log(T) + Klog(T))
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Regret Analysis: Stochastic Regime

» From Prop | & AM-GM,

R(T) < 2 (%Af Z;pi(t) O (Z—:log(T )>> O(K log(T))
» From the above two bounds, we have

R(T) = 2R(T) — R(T)

T 2
— Z [Ai - [Zpi(t)] + O (Z—l log(T))] + O(K log(T)) — Z A;
=1 i

I#1* I#1*

|
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Regre Analysis: Adversarial & Data-Dependent Regime

® Definition of the regularization function v, and standard technique of OFTRL yields:

® Definition of m(?) yields

Lem. 3 It holds for any #* € [0,1]" that

X1 1@ = 10 - m0)

Consequently,

S0 0 = 0 - mo)

S0 = 0 - 65

+ O(K log(T))

= min{Q_,L* + R(T), T — L* — R(T)} + O(K log(T))

® Combining the above two lemmas, R(T) =0 (\/Kmin{Qoo,L*, T — L*}log(T) + Klog(T))



Numerical Comparison with

® Setting: Bernoulli distribution with K = 5

Experiment |.

Experiment 2.

e Stochastic regime

e u=(05,09, ...,0.9)

— small al.z
TsallisINF-RV +J
‘q')’ 150 | —o— LogBarrierINF-V ‘ 8
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e Stochastic regime

e 4 =(0.5,0.55, ...,0.55)

2

—e— TS
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—o— LogBarrierl

— LBINF-V
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0 2500

5000

round

7500

10000
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Thompson Sampling (TS) & Tsallis-INF w/ RV-estimator

Experiment 3.

e Stochastically constrained
adversarial regime

e A = 0.1(same as Figure 3
in [Zimmert & Seldin 20211])

500 —e—= 15
') TsallisINF-RV
8 —6— LogBarrierINF-V
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)
n
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O
E
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Conclusion & Future work

® OFTRL with adaptive learning rate achieves

stochastic regime (C = 0)

n . .
adversarial regime w/ 2 . -
: : : : C . . o” : variance of arm i
stochastic regime w/ adversarial corruptions a self-bounding constraint —

C=Y_ 17~
2 2

N 0, 0,
adversarial regime 0 Z (K + Dlog 7'+ CZ (Z + Dlog T
it it
0 (\/Kmin{T, I*.0_] log T)

L*, Q. : data-dependent measures The leading constant of the regret upper bound is

close to the lower bound (gap ~ 2)

® Future work
» Can we achieve a gap < 2 while preserving BOBWV and/or corruption robustness!?

» Can we remove the assumption that the optimal arm is unique?
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Summary of Today’s Talk

|. Thompson sampling for stochastic partial 2. A best-of-both-worlds algorithm with

monitoring (NeurlP$2020) variance-dependent regret bounds
> (possibly) practical since the algorithm can (COLT2022)
handle many problems and is empirically > (possibly) practical since the algorithm can
good handle adversarial corruption and have
> available at https:/arxiv.org/abs/2006.09668 “state-of-the-art” performance

> available at https://arxiv.org/abs/2206.068 10

_» A variety of
online-decision making problems

Th S Ii * linear bandits
Ompson Jamping e dueling bandits
Partial Monitoring game ¢ dynamic pricing

Empirically good performance

How to apply?
Theoretically justifiable?
Empirically good?

* label efficient prediction
. LR

' . A novel TS-based algorithm using a tight proposal distribution ‘,

Thank you for listening!

12. First logarithmic regret upper bound both for PM and linear bandit


https://arxiv.org/abs/2206.06810
https://arxiv.org/abs/2006.09668

