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Introduction | Best-of-Both-Worlds in Bandits (zuweckand siviins 2012

Stochastic regime j j Adversarial regime )
—| —| —| —

UCB O(log T)

...................... KT 4 of oulle T
= PEE # of pulls T

What We Hope :Achieving optimality for both stochastic and adversarial regimes

Machine | Machine 2 Machine | Machine 2
Ber(0.9) Ber(0.1) any values in [0, 1]
Regret
wer Regret
............ UCB Q(T)
exp306/T) | 7
““““““““ Exp3 O(ﬁ)

w/o knowing the underlying regime = Best-of-Both-Worlds (BOBW)

Q. BOBW in more complex settings?
S. Bubeck and A. Slivkins. The best of both worlds: Stochastic and adversarial bandits. In COLT 2012.
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Research Question

Best-of-Both-WWorlds is possible
in (relatively) simple settings

Many online decision-making problems

full information
multi-armed bandits
online learning w/ feedback graphs

: o
* dueling bandits

*, Special cases

dynamic pricing
label efficient prediction

Partial monitoring
Rewards are not directly observed

Q. Can we achieve best-of-both-worlds in partial monitoring!
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Outline

® |ntroduction: research question

® Preliminary: partial monitoring

® BOBWY algorithm for locally observable games
® BOBWY algorithm for globally observable games

® Summary
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Partial Monitoring Example: Dynamic Pricing

Learner (= seller) opportunity loss feedback

User’s evaluation price

t=1
. $90 — $40 = $50 R
otel owner accomm. fee $40 7
OTEL Use if accomm. fee < $90
t=2
el Wev
$c (const.) No-buy

(- $50 — $80 < $0)

decides accommodation fee 2ccomm. fee $80
of room from {$1,..., $k} '
Use if accomm. fee < $50

4T W OO

Only feedback (Buy or No-Buy) is observable to the seller!

Q. Possible to minimize the total loss only with limited feedbacks?
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Formulation of Partial Monitoring

® Consider partial monitoring game G = (L, @) with k-action and d-outcomes

® Loss matrix L = (L) € [0,1]"¢, feedback matrix ® € X**¢ (X :set of feedback symbols)
observed to the player

I~

SN = v PRSP TR—— ,i,,‘,_‘,‘)

Adversary seIects outcomes X1 - xT E {1
At eachroundt=1,..., T
* ei{l,....k}

|. Learner selects ac%
2 Learner incurs Ioss A nd observes feedback

Xy -

@@

txt

i

® Goal: minimize regret R

RT — [Zt_ LAtxt Z Ldi—] a¥x, a*xt] ’ a* = di'g minae[k] [zt_l axt]

cumulative losses cumulatwe losses
of taken actions of optimal action
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Example |. Dynamic Pricing (.iberg s teighton 2003

k : discrete range of selling price
d : discrete range of evaluation price (row: selling price, column: evaluation price)

selecting action outcome loss matrix X>a
= determining the selling price| |= evaluation price ;o {x —a ifx>a 01 2 3 4
ax .
C otherwise
Y = {Buy(()), No-Buy( x )} c 01 2 3
Learner (= seller)l Adversaryl opportunity loss feedback L —1|¢ € O 1 2
_ User’s evaluation price cC C C O 1
$90 — $40 = $50 ¢c ¢c ¢ c
ot ovner [accommfee $40 Y feedback matrix T >
X da
. i C
=== ? - Use if accomm. fee < $90 (I)ax _ { O if x > a O O Q O O
TLER" - - = X otherwise | O O O O
- . : <
2 $ t.
decides accommodation fee |accomm oo $3 Ol (° $58 (_co$rés0 )< $0) No-buy O =] X X Q O O
of room from {$1,..., $k} — RA SRETHE
Use if accomm. fee < $50 X X X O O
L= B0 BCIO8 ®® XX XX O
X

R. Kleinberg and T. Leighton, The value of knowing a demand curve: Bounds on regret for online posted-price auctions. In FOCS 2003.
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Example 2. Apple Tasing, Matching Pennies

® Learner predicts label (positive or negative) of items in an online manner
® Three possible actions when labeling items:

|. Label as positive (P)

2. Label as negative (N)

3. Ask a expert (A true label is revealed to the learner.)

0 cnop None None
P=N cnop > O :failure cost of N to P None None
q q cp_N > 0 :failure cost of P to N P N

g > 0 : cost of asking the expert
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Classification of Partial Monitoring Games isarsk, psi & szepesvari 2010, 2011

[Lattimore & Szepesvari 2019]

* PM games fall into four classes based on their minimax regret R(G) = inf, max RAx, (x,), G)

(informal, stochastic)

Taking pair of actions a, b € [k] is enough

Trivial: R(G) = 0
locally
S—

to know (L, — L,)'v*
PM Fasy: R (G) = @(ﬁ) observable b
games —
Hard: R(G) = ©(T%?) globally
observable

Taking pair of actions a, b € [k] can be
NOT enough to know (L, — L) v*
but taking all actions is enough

Hopeless: RA(G) = Q(T)

G. Barték, D. Pél, and Cs. Szepesvari. Toward a classification of finite partial-monitoring games. In ALT 2010.
G. Barték, D. Pél, and Cs. Szepesvdri. Minimax regret of finite partial-monitoring games in stochastic environments. In COLT 2011.
T. Lattimore and Cs. Szepesvdri. Cleaning up the neighborhood: A full classification for adversarial partial monitoring. In ALT 2019.
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Three Regimes in Partial Monitoring

1.1.d
) ) . oNoo >I< L . . . . .
® Stochastic regime: x, vt € 9P, (dist.over outcomes) [ adversarial regime: Pessimistic

® Adversarial regime: x, arbitrarily decided : , ,
 Intermediate regime ...?

: | Stochastic regime: Optimistic| :

® Stochastic regime w/ adversarial corruptions (for PM)
(A MAB version was considered [Lykouris, Mirrokni & Leme 2018] )

. adversarial noise , ,
Outcomes sampled in i.i.d. manner Outcomes with noise
at most C

ﬁ
Xiyoon Xp (@@

/ /
Xiseees Xy ~ UF

4 C=E[Y _, IlLe, — Leyl]

C = 0 — stochastic regime
C = T — adversarial regime

Q. Can we achieve “best” in all regimes?

T. Lykouris, V. Mirrokni, and R.P. Leme. Stochastic bandits robust to adversarial corruptions. In STOC 2018.
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Our Regret Bounds: Comparison with Existing Bounds

® | ocally observable games

Corruption level: C =

T
u [Zt:] HLext - Lex{”oo] . xl{ ~ I/*

Stochastic Adversarial Stochastic w/ Corruptions
[Tsuchiya+ 2020] O(logT) NA NA
[Lattimore+ 2020] NA OGW/T) NA
Proposed O((log T)?) OGW/TlogT) O((log T)*> +1/ClogT)
® Globally observable games
Stochastic Adversarial Stochastic w/ Corruptions
[Lattimore+ 2020] NA O(TP) NA
Proposed O((log T)*) O((T log T)*?) O((log T)* + (Clog T)*")

T. Tsuchiya, J. Honda, and M. Sugiyama. Analysis and design of Thompson sampling for stochastic partial monitoring. In NeurlPS 2020.
T. Lattimore and Cs. Szepesvdri. Exploration by optimisation in partial monitoring. In COLT 2020.
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® Introduction: research question
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® BOBWY algorithm for locally observable games
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Follow-the-Regularized-Leader in Bandits

® Follow-the-Regularized-Leader (FTRL):

> One of the most common approaches for achieving BOBW [Wei & Luo 2018, Zimmert & Seldin, 2021, many!]

» Determine action selection probability p, € &,
by minimizing “sum of estimated losses so far + convex regularizer’: P2 P

sum of estimated losses convex regularization function

—1 A

p; € argmin, (2, 9. p) + wi(p)

y, € R* : unbiased estimator of L

® Common to transform the output of FTRL ¢, to action selection probability p, € &, :
|. Compute g, € &, by FTRL

2. Transform g, top,: p,=T,(q) Important particularly in locally observable games

C.W. Wei and H. Luo. More adaptive algorithms for adversarial bandits. In COLT 2018.
J. Zimmert and Y. Seldin. Tsallis-INF: An optimal algorithm for stochastic and adversarial bandits. JMLR, 2021.
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Exploration by Optimisation (EXpBYOPt) (iimore & scepesveri 2020]

® A technique to decide p, from ¢, and to favorably bound the stability term in PM
® We can bound the regret of FTRL w/ negative Shannon entropy w,(q) = — n, 'H(g) as

b-th dim of G:amount of information about action b when selecting action a and receive symbol @

T k

| nGa,®, )

RT S |:Z (penaltY(t) + (pt o %)TLext T ; Zptaqth ( : D >>:|
=1 L a=1 a

stability term (< variance of loss estimator)

transformation term

® ExpByOpt selects p, from g, by
minimizing the sum of transformation and stability terms (for a worst-case outcome)

L (p—q'Le, 1Y nGla, ®@,,)
p,=J,(q): opt,(n):=minimize,.,  Mmax [ | Z p.Y, t

n n?

x€|[d] Pa

T. Lattimore and Cs. Szepesvdri. Exploration by optimisation in partial monitoring. In COLT 2020.
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Self-Bounding Technique : A technique to prove BOBW

[Zimmert & Seldin 2021]

® Use upper and lower bounds of regret depending on FTRL outputs ¢,

Strategy. Suppose that using Q = [ [Z; (1 — %a*)] e [0,7] it holds that
R; 5 O(polylog(T)y/Q)  and R >A_. 0O

Adversarial regime: ‘l' \ Stochastic regime ‘l'

~ R;=2R;—R
Ry 5 O(polylog(T)/0) < OW/T) < Opolylog(My/0) — A0 = 0

A

, | ~ Require a “non-vacuous” lower bound
® ExpByOpt only considers the adversarial regime

( polylog(T) )

min

» Cannot derive a valid lower bound R, = Q(A . () for applying the self-bounding technique
(A naive use of EbO can lead to p, = 0 and g, > O for some a € [k])

J. Zimmert and Y. Seldin. Tsallis-INF: An optimal algorithm for stochastic and adversarial bandits. JMLR, 2021.
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Solution: Restricting Feasible Set in Vanilla ExpByOpt

® |dea: Restrict a feasible set of the optimization problem to determine p, from g,

L (p—q'Le, 1 ¢
[Lattimore & Szepesvari 2020] Optq(n) L= mlnlmlzepeggk max |: - | ZPaTq

x€[d] N 7’]2 o
| , L (p—q)'Le, 1
This work opt,(17) 1= minimiZe,c g,y Max F—
x€[d] N N

Pg) ={pe P, :p,>q,/(2k)foralla € [k]} C P,

1
This restriction leads to R, > —A

k min

() and

The component of regret is favorably bounded despite &°,(g) C &, .
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Main Result for Locally Observable Games

® Combine the restricted EbO with the adaptive learning rate with truncation

/ / / Cl . 1
pr=czl. fry =P t , Py = max {B,ﬁz}, and 77, = F
-1
\/1 T (lOg kH) ZS:l H(qs) [Ito, TSUChi)’(t] & Honda 2022]

Theorem. Consider non-degenerate locally observable games. Under some conditions,

adversarial corruptions A A

Stochastic regime w/ R — 0( m>k*log(T)log(kyT) | \/ Cm?*k*log(T)log(kyT) )
T - |

Adversarial regime R, = O(mk3/ 2\/ T log(T)log kH) + 2mk* log ki (kg < k)

® A first best-of-both-worlds algorithm for non-degenerate locally observable PM

e Adversarial: a factor of \/ log T worse than that by Lattimore & Szepesvari 2020

S. lto, T. Tsuchiya, and J. Honda. Nearly optimal best-of-both-worlds algorithms for online learning with feedback graphs. In NeurIPS 2022.
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Main Result for Globally Observable Games

® Shannon entropy regularizer + an adaptive learning rate leads to

Theorem. Consider globally observable games. Under some conditions,

adversarial corruptions A2 A2
min min

1/3
Stochastic regime w/ R 0( C(z; log(T)log(kT') | (C 2C(2; log(T)log(kyT) ) )
T — 1

Adversarial regime Ry = 0( (C(z; 10g(T)10g(kHT)) 1/3T2/ 3 )

® Refining analysis replaces the hybrid regularizer with Shannon entropy
Tsallis entropy Ours ¢, becomes a closed-form

[Zimmert, Luo & Wei 2019] %(Q) = — ﬂt_l(T(Q) + H(1 — q)) 1(q) = Zzzl\/@

1
> ) =-—H@
[Ito, Tsuchiya & Honda 2022] l//t(Q) = — }’]t_l(H(Q) + H(1 — g)) Ny

J. Zimmert, H. Luo, and C. Y. Wei. Beating stochastic and adversarial semi-bandits optimally and simultaneously. In AISTATS 2019.
S. lto, T. Tsuchiya, and J. Honda. Nearly optimal best-of-both-worlds algorithms for online learning with feedback graphs. In NeurlPS 2022.
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Summary | BOBW Algorithms for Partial Monitoring

Locally observable games Globally observable games
Extended exploration by optimisation for stochastic A closed-form computation of g, by refining analysis
1
P, Existing  wiq) = ——(H(q) + H(1 — g))
SUP e, OPLy(1) < 3m°k e —1
T (transformation Ours  ¥{q) = — ;H(Q) = diq X exp( B mz j\}sa)
! s=1

+ stability terms) / learning rate

® Future work
» From polylogT to log T

» Remove the redundant O(k) multiplicative factor in locally observable setting



