Stability-penalty-adaptive follow-the-regularized-leader: Sparsity, game-dependency, and best-of-both-worlds

Neural Information Processing Systems (NeurIPS 2023)

<u>Taira Tsuchiya</u>¹, Shinji Ito^{2,3}, Junya Honda^{4,3} I. The University of Tokyo, 2. NEC, 3. RIKEN, 4. Kyoto University

Environment adaptivity in online learning and bandits

Consider regret minimization for given T rounds

- **Data-dependent bounds** in adversarial environments [Allenberg-Auer-Györfi-Ottucsák 2006]
 - Regret bounds exploiting the property of the underlying environment
 - e.g., First-order / second-order / path-length bounds

Best-of-both-worlds [Bubeck & Slivkins 2012]

- Knowing if the environment is stochastic or adversarial in advance is challenging
- Aiming to achieve optimality in both stochastic and adversarial environments simultaneously e.g., $O(\log T)$ in stochastic environments and $O(\sqrt{T})$ in adversarial environments for T rounds

S. Bubeck and A. Slivkins. The best of both worlds: Stochastic and adversarial bandits. In COLT 2012.

C. Allenberg, P. Auer, L. Györfi, and G. Ottucsák. Hannan consistency in on-line learning in case of unbounded losses under partial monitoring. In ALT 2006.

Can we make FTRL more adaptive?

- Follow-the-regularized-leader (FTRL) can achieve these environment adaptivity
- For FTRL with the Shannon entropy regularizer with learning rate $(\eta_t)_{t=1}^T$, a main part of the regret is bounded by $\mathbb{E}\left[\widehat{\operatorname{Reg}}_{\tau}^{SP}\right]$ for

$$\widehat{\operatorname{Reg}}_{T}^{\operatorname{SP}} = \sum_{t=1}^{T} \left(\frac{1}{\eta_{t+1}} - \frac{1}{\eta_{t}} \right) h_{t+1} + \sum_{t=1}^{T} \eta_{t} Z_{t}$$
penalty $t=1$ stability

- Existing adaptive learning rates $(\eta_t)_{t=1}^T$ in FTRL depend only on the (empirical) penalty or stability terms
 - With empirical stability $(z_s)_{s=1}^{t-1}$ and worst-case penalty terms $h_{\max} \ge \max_{t \in [T]} h_t$, we get data-dependent bounds [McMahan 2011; Lattimore & Szepesvári 2020, and so many!]
 - With empirical penalty $(h_s)_{s=1}^{t-1}$ and worst-case stability $\overline{z} \ge \max_{t \in [T]} z_t$, we get **best-of-both-worlds** [Ito-Tsuchiya-Honda 2022, Tsuchiya-Ito-Honda 2023]

Q. Can we construct learning rates jointly dependent on the **empirical** stability and penalty?

Stability-penalty-adaptive (SPA) learning rate

Definition (informal)

A sequence of learning rates $(\eta_t)_{t=1}^T$ is stability-penalty-adaptive (SPA) learning rate if the update is written with a certain non-negative reals $((h_t, z_t, \overline{z}_t))_{t=1}^T$ as follows:

$$\beta_t = \frac{1}{\eta_t}, \quad \beta_1 > 0, \quad \beta_{t+1} = \beta_t + \frac{c_1 z_t}{\sqrt{c_2 + \bar{z}h_1 + \sum_{s=1}^{t-1} z_s h_{s+1}}} \quad \text{update jointly dependent of the stability } z_s \& \text{ penalticle}$$

Theorem (informal)

Let $(\eta_t)_{t=1}^T$ be a SPA learning rate. Then under a certain condition on $((h_t, z_t, \overline{z}_t))_{t=1}^T$,

$$\widehat{\operatorname{Reg}}_{T}^{\operatorname{SP}} = \widetilde{O}\left(\sqrt{c_{2} + \overline{z}_{t}h_{1}} + \sum_{t=1}^{T} z_{t}h_{t+1}\right)$$

Q. Can we simultaneously achieve BOBW and data-dependent bounds? → check in multi-armed bandits and partial monitoring

regret bound jointly dependent on stability z_s & penalty h_{s+1}

dent on ty h_{s+1}

I. Sparsity and BOBW in multi-armed bandits

- Sparsity level of losses $\ell_1, \dots, \ell_T \in [0,1]^k$ is defined as $s = \max_{t \in [T]} \|\ell_t\|_0 \le k$ • Sparsity-dependent bounds: data-dependent bounds considering the sparsity level $s \ll k$
- Lower bound: $\Omega(\sqrt{sT})$, Upper bound: $\tilde{O}(\sqrt{sT})$ [Kwon & Perchet 2016, Bubeck-Cohen-Li 2018]
- Appropriately setting the stability and penalty terms in SPA learning rate yields

J. Kwon and V. Perchet. Gains and losses are fundamentally different in regret minimization: The sparse case. JMLR, 2016. S. Bubeck, M. Cohen, and Y. Li. Sparsity, variance and curvature in multi-armed bandits. In ALT 2018.

with some important techniques

2. Game-dependency and BOBW in partial monitoring

<u>Hierarchical structure of problem classes</u>

 Δ_{\min}

T. Lattimore and Cs. Szepesvári. Exploration by optimisation in partial monitoring. In COLT 2020.

Partial monitoring = a very general online decision-making problems Tend to be pessimistic

Desirable to automatically achieve **regret** that depends on the inherent difficulty of the problem being solved

→ game-dependent bounds [Lattimore & Szepesvári 2020]

$$\frac{vable \text{ partial monitoring games,}}{\log(1+T)} + o(\log T) \qquad \frac{V'_t, \bar{V}: \text{ variables dependent on problem's inherent difficulty}}{(kT)} + \sqrt{\frac{Cr_{\mathscr{M}}\bar{V}\log(T)\log(kT)}{\Delta_{\min}}} + o(\log T)}$$

Summary Learning rate jointly dependent on stability and penalty

The main term of regret upper bound of FTRL

Sparsity-dependent bound and best-of-both-worlds guarantee

2. Partial monitoring

Game-dependent bound and best-of-both-worlds guarantee

