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Environment adaptivity in online learning and bandits
Consider regret minimization for given  rounds

• Data-dependent bounds in adversarial environments

‣ Regret bounds exploiting the property of the underlying environment

‣ e.g., First-order / second-order / path-length bounds 
 
 
 
 
 
 
 

• Best-of-both-worlds

‣ Knowing if the environment is stochastic or adversarial in advance is challenging

‣ Aiming to achieve optimality in both stochastic and adversarial environments simultaneously 
e.g.,  in stochastic environments and  in adversarial environments for  rounds
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C. Allenberg, P. Auer, L. Györfi, and G. Ottucsák. Hannan consistency in on-line learning in case of unbounded losses under partial monitoring. In ALT 2006. 
S. Bubeck and A. Slivkins. The best of both worlds: Stochastic and adversarial bandits. In COLT 2012.

[Allenberg-Auer-Györfi-Ottucsák 2006]

[Bubeck & Slivkins 2012]
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Can we make FTRL more adaptive?

• Follow-the-regularized-leader (FTRL) can achieve these environment adaptivity

• For FTRL with the Shannon entropy regularizer with learning rate ,   

a main part of the regret is bounded by  for 
 
 
 

• Existing adaptive learning rates  in FTRL depend only on the (empirical) penalty or stability 
terms

‣With empirical stability  and worst-case penalty terms  , 
we get data-dependent bounds

‣With empirical penalty  and worst-case stability  , 
we get best-of-both-worlds
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[Ito-Tsuchiya-Honda 2022, Tsuchiya-Ito-Honda 2023]

[McMahan 2011; Lattimore & Szepesvári 2020, and so many!]

Q. Can we construct learning rates jointly dependent on the empirical stability and penalty?
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Stability-penalty-adaptive (SPA) learning rate
4

A sequence of learning rates  is stability-penalty-adaptive (SPA) learning rate if
the update is written with a certain non-negative reals  as follows:
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Theorem (informal) 
Let  be a SPA learning rate. Then under a certain condition on , (ηt)T

t=1 ((ht, zt, z̄t))T
t=1

update jointly dependent on  
stability  & penalty zs hs+1

regret bound jointly dependent on  
stability  & penalty  zs hs+1

Q. Can we simultaneously achieve BOBW and data-dependent bounds? 
→ check in multi-armed bandits and partial monitoring



/ 7

1. Sparsity and BOBW in multi-armed bandits

• Sparsity level of losses  is defined as 

• Sparsity-dependent bounds: data-dependent bounds considering the sparsity level 

‣ Lower bound: , Upper bound:   

• Appropriately setting the stability and penalty terms in SPA learning rate yields

ℓ1, …, ℓT ∈ [0,1]k s = maxt∈[T] ∥ℓt∥0 ≤ k
s ≪ k

Ω( sT) Õ( sT)

5

[Kwon & Perchet 2016, Bubeck-Cohen-Li 2018]

J. Kwon and V. Perchet. Gains and losses are fundamentally different in regret minimization: The sparse case. JMLR, 2016. 
S. Bubeck, M. Cohen, and Y. Li. Sparsity, variance and curvature in multi-armed bandits. In ALT 2018. 

Corrupted 
Stochastic Env.

Adversarial Env.

Theorem (informal) 

RT = O( s log(T)log(kT)
Δmin

+ Cs log(T)log(kT)
Δmin )

RT = O( sT log(k) log(T)) sparsity-dependent bound

best-of-both-worlds

with some important techniques
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2. Game-dependency and BOBW in partial monitoring
6

Hierarchical structure of problem classes

Multi-armed bandits Dynamic pricing

(Locally observable) partial monitoring
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Expert advice

T. Lattimore and Cs. Szepesvári. Exploration by optimisation in partial monitoring. In COLT 2020.

Desirable to automatically achieve regret that depends on  
the inherent difficulty of the problem being solved
→ game-dependent bounds [Lattimore & Szepesvári 2020]

For locally observable partial monitoring games,Theorem (informal) 

RT = O( rℳV̄ log(T)log(kT)
Δmin

+ CrℳV̄ log(T)log(kT)
Δmin ) + o(log T)

RT ≤ ![
T

∑
t=1

V′ t log(k)log(1 + T) ] + o(log T)

Corrupted
Stochastic Env.

Adversarial Env.
 :  variables dependent on  

problem's inherent difficulty
V′ t, V̄

Partial monitoring = a very general online decision-making problems
Tend to be pessimistic
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Learning rate jointly dependent on stability and penalty
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The main term of regret upper bound of FTRL

Stability-penalty-adaptive learning rate

βt+1 = βt + c1zt
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Regret bound jointly
dependent on  
stability and penalty

1. Multi-armed bandits

2. Partial monitoring

Sparsity-dependent bound
and best-of-both-worlds guarantee

Game-dependent bound
and best-of-both-worlds guarantee


