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Introduction | Multi-armed bandits

® Select one of k slot-machines for T times to minimize the cumulative loss

The adversary determines loss vectors £, ..., £ € [0,1]° | « Z,; € [0,1] :loss of arm i at time ¢
Fort=1,...,T:

|. The learner selects arm A, € {1,..., k}

2.The learner observes the loss of A,, 7, 4 € [0,1]

® (Goal: minimize the cumulative loss = minimize (pseudo-)regret R

R, =1L [ZT: Cia ZT: ft,i*] , 1™ =argmin[E [i ft,i]
=1 =1
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Environments in online learning and bandits

® |n case of multi-armed bandits,
» Adversarial environments: ', ..., ¢ € (0,17, very pessimistic

> Stochastic environments: £, ; ~ v* for i € [k], somewhat optimistic

» Stochastic environments with adversarial corruptions
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Stochastic environments with adversarial corruptions

: L 1.0
Adversarial env : Too pessimistic
A o0
0.3 WM - '*';Ow.ﬁ.- d f:,‘M -
: 0.6- Losses ofjarm 2
Stochastic env (bounded losses)| = <
Too optimistic 0.4-
- TRIX X X XK K X
X XX X
%xi@z%&%i XA
021 =® :
- Losses oflarm |
. ° .
0.0n .'IIII.II?)IH 4'0

Noisy observations {

Stochastic env with adversarial corruptions [Lykouris, Mirrokni & Leme 2018]

Stochastically generated Losses with noise

losses
Adversarial noise
i,...,f%’vy* -_—> fla°°-9fT
T / .
OO C= -[thl 1 — ?/ﬂt”oo] OJO C = 0 — Stochastic env

— — I
T. Lykouris, V. Mirrokni, and R.P. Leme. Stochastic bandits robust to adversarial corruptions. In STOC 2018. C 2T Adversarial env
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Adaptivity |. Data-dependent bounds in adversarial env

first-order bound

® Adversarial env: 7, ..

X
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. T .
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[Allenberg, Auer, Gydrfi & Ottucsdk 2006]
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LT € [0,11%, too pessimistic

® | oss sequences in the real world usually have benign structures

second-order bound
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0 20 m 0.0

[Hazan & Kale 2011]
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path-length bound

,22 Hft — ft_luz is small
Patets939.4
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t

[Wei & Luo 2018]

Data-dependent bounds: Bounds that depend on the benign level of losses



Ad aptiVity 2: BeSt' Of'bOth-WO rlds [Bubeck & Slivkins 2012, Zimmert & Seldin 2021]
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Stochastic environment Adversarial environment
i ™ I/l.>I< for all i € [k] s ..., € [0,11F are arbitrary decided
Regret Regret
............. UCB Q(T)
sp3oyh | 7

UCB O(log T) optimal

What we want: Achieving optimality for both stochastic and adversarial env

without knowing the underlying env = Best-of-Both-Worlds (BOBW)

Exp3 O(ﬁ) optimal

...................... KT 4 of oulle T
= PEE # of pulls T

Better if it performs well also in stochastic env with adversarial corruption

S. Bubeck and A. Slivkins. The best of both worlds: Stochastic and adversarial bandits. In COLT 2012.
J. Zimmert and Y. Seldin. Tsallis-INF: An optimal algorithm for stochastic and adversarial bandits. Journal of Machine Learning Research, 2021.
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Background and Research Question

® Many environment adaptivities can be realized
b)’ FOl|0W-the-Regu|a|"ized-Leade|" (FTRL) [Wei & Luo 2018, Zimmert & Seldin 2021, and many!]

® Need to design regularizers and learning rate in FTRL

® Only a few algorithms can achieve simultaneous environment adaptivities
(e.g., data-dependent bounds & BOBWY) (There are some for FTRL w/ log-barrier [Ito 2021, Ito-T-Honda 2022, T-lto-Honda 2023])

Research Question

Q. Is it possible to establish an algorithm with
a data-dependent bound and a BOBW guarantee simultaneously?

A. Possible by adapting learning rate of FTRL to multiple observations!

— Apply this to multi-armed bandits and partial monitoring

C.Y. Wei and H. Luo. More adaptive algorithms for adversarial bandits. In COLT 2018.
J. Zimmert and Y. Seldin. Tsallis-INF: An optimal algorithm for stochastic and adversarial bandits. Journal of Machine Learning Research, 2021.
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Outline

® Follow-the-Regularized-Leader and Stability-Penalty-Adaptive Learning Rate

® Case Study |:Sparsity and Best-of-Both-WWorlds in Multi-armed Bandits

® A Quick Introduction of Partial Monitoring

® Cases Study 2: Game-dependency and Best-of-Both-Worlds in Partial Monitoring

® Summary



Follow-the-Regularized-Leader in Online Learning

® Follow-the-Regularized-Leader (FTRL):

» Determine action selection probability p, € &,

by minimizing “sum of estimated losses so far + convex regularizer”:

cumulative estimated losses convex regularizer

p; € argmin { < 2;11 2S,p> + lm(p)}
PEP,

£, € R* :some estimator of Z,

» One of the most common approaches for achieving data-dependent bounds and BOBW

P2

9/ 29
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Regret Bound: Penalty-Stability Decomposition

® FTRL can achieve these environment adaptivities

I

® For FTRL with the Shannon entropy regularizer with learning rate (7,),_,,

Ry S

nyy

Reg .

T T
_—_SP 1 1
+ (insignificant term)  for Reg . = 2 ( > Ry + Z My
=1 \ T+t penalty =l stability

> Examples in multi-armed bandits:

: : : . ~ Z 1A, = al
Shannon entropy regularizer and inverse-weighted estimator £, = ——
la Pta
k k fZ
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Can we make FTRL more adaptive!

T
RegT=§'( > t+1+§,’7tzt
Ny
»

=1 \ T+l enalty =1 stability

e Existing adaptive learning rates (;7t)T= depend on either the penalty or stability

> With empirical stability (z,)'_} and worst-case penalty terms h,, > max,c;7 4, »

we get data-dependent bounds [McMahan 2011 (AdaGrad); Lattimore & Szepesvdari 2020, and so many!]

lOg k : k 2
e.g., In MAB, 5, = correspondingto z, = ), _ p, L1, and A, =logk

—1
\k + Zizl fszAS/pSAS

> With empirical penalty (h,)'_}| and worst-case stability Z > max,c(7% ,
we get best-of-both-worlds [lto, T, & Honda 2022, T, lto, & Honda 2023]

const

1
ﬂt:_a ﬁ1>09 ﬁt+1:ﬁt=
I \/const ZS thH

Q. Can we construct learning rates jointly dependent on the empirical stability and penalty?
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Stability-Penalty-Adaptive (SPA) Learning Rate

Definition (informal)

A sequence of learning rates (zyt)l‘T=1 is stability-penalty-adaptive (SPA) learning rate if
the update is written with a certain non-negative reals ((%,, z,, Z,))._; as follows:

1
p=—, >0, p.,=pA update jointly dependent on
Ny \/Cz + Zh, + Z:llzshsﬂ stability z; & penalty A, |

lllllllllll

Theorem (informal)
Let (17,),_, be a SPA learning rate.Then under a certain condition on ((%,,z,, Z,));_;,

r stability z; & penalty A, |

llllllllllllllll

e :
_———~—_SP ~ = . . .
Reg.. =0 (\62 + Zh, _|_. Z Zrhr+1§> regret bound jointly dependent on
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SPA Learning Rate Generalizes Existing Learning Rates

® Letting h, < h_,, forall 7 € [T] in SPA learning rate yields

stability-dependent learning rate (AdaGrad-type learning rate) of

1 h

max

— 5 = —1
P \const + 2 %

Hy

® |etting 7, < Z for all t € [T] in SPA learning rate yields
penalty-dependent learning rate of

const

1
p=—, >0, [y =pA 1
I \/const 2;1 hoyy

Q. Can we simultaneously achieve BOBWV and data-dependent bounds!?
— check in multi-armed bandits and partial monitoring
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Outline

® |ntroduction

® Follow-the-Regularized-Leader and Stability-Penalty-Adaptive Learning Rate
® Case Study |:Sparsity and Best-of-Both-VWorlds in Multi-armed Bandits

® A Quick Introduction of Partial Monitoring

® Cases Study 2: Game-dependency and Best-of-Both-Worlds in Partial Monitoring

® Summary
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Case Study |. Sparsity in Multi-armed Bandits

® Many problems involve sparse losses: Z, € [—1,1] with 5 = max,cr [[7lp <K &

Online ads allocation Online shortest Path
Most ads are not clicked on: No data loss in most routes:
For mosta € [k], r,,:==—¢,, =0 For mosta € [k],£,, =0

Goal

o000
https://SNS.com

Start

® Sparsity-dependent bounds: Data-dependent bounds that depend on the sparsity level s < k
> Lower bound: 2(1/sT) [Kwon & Perchet, 2016]

» Upper bound: 0(\/ST log k) with known sparsity level s [Kwon & Perchet, 2016, Bubeck, Cohen & Li, 2018]

J. Kwon and V. Perchet. Gains and losses are fundamentally different in regret minimization: The sparse case. JMLR, 2016.
S. Bubeck, M. Cohen, and Y. Li. Sparsity, variance and curvature in multi-armed bandits. In ALT 2018.
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|. Regret Upper Bounds | Sparsity and BOBW

Theorem (informal) There exists an algorithm based on SPA learning rate that achieves
Corrupted o _ O( slog()log(kT) \/ Cslog(T)log(KT)
= +

Stochastic Env.

A A

min min

) best-of-both-worlds

Adversarial Env. R, = O(\/ sT log(k) log(T)) sparsity-dependent bound

® Technique: Evaluate the change of FTRL output. Let i, ~ H(p,). Then,

SO0 (\/ Y E [Zthm]) ST 0 (\/ 2 E [Zrhr])

Lemma. i, | S h+ ¢

Ry S

SPA learning rate

s E[h,] — best-of-both-worlds

— _[Ztht] — _[_[Zt‘pt] ht] < {

log(k) E[z,] — sparsity-dependent bound
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Outline

® |ntroduction

® Follow-the-Regularized-Leader and Stability-Penalty-Adaptive Learning Rate
® (Case Study |:Sparsity and Best-of-Both-WWorlds in Multi-armed Bandits

® A Quick Introduction of Partial Monitoring

® Cases Study 2: Game-dependency and Best-of-Both-Worlds in Partial Monitoring

® Summary



Partial Monitoring: 18/25
A general online decision-making problem

® Online learning with full information

® Multi-armed bandits

® Online learning with feedback graphs
® Dueling bandits

® Dynamic pricing

® Label efficient prediction

A variety of

online-decision making problems
* multi-armed bandits

dueling bandits

Partial monitoring game  ° S
* dynamic pricing

label efficient prediction
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Partial Monitoring Example: Dynamic Pricing

opportunity loss feedback

User’s evaluation price

=1
Hotel $90 — $40 = $50 .
otel owner accomm. fee $40 y
EEE Use if accomm. fee < $90
EEE t=2
sEa
.-
$c (const.) No-buy

(- $50 — $80 < $0)

decides accommodation fee 2ccomm. fee $80
of room from {$1,..., $k} '
Use if accomm. fee < $50

4T BE OO

Only feedback (Buy or No-Buy) is observable to the owner!

Q. Possible to minimize the total loss only with limited feedbacks?
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Formulation of Partial Monitoring

® Consider partial monitoring game G = (L, ®) with k-actions and d-outcomes

® Loss matrix L = (Lax) & [O,l]kXd, feedback matrix ® & ZkXd (Z - set of feedback symbols)
observed to the learner

|Adversary selects outcomes x;, 7., Xr e { 1 ,d} *

At eachroundr=1,...,7T:

|. Learner selects actlo% {1,.. %@
txt

2 Learner incurs Ioss LAfxt and observes feedback

® Goal: minimize regret R

RT — [Zt_ LAtxt Z Ldi—] a¥x, a*xt] ’ a* = di'g minae[k] = [zt_l axt]

cumulative losses cumulatwe losses
of taken actions of optimal action
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Example |. Dynamic Pricing (.iberg s teighton 2003

® Partial |7 . Jiccrete range of accom. fee ctions and M outcomes
® loss mal¢ :discrete range of evaluation price[yNXM (3 : set of feedback symbols)
(row: selling price, column: evaluation price)

outcome loss matrix Xzda
= evaluation price . {x —a fx>a

selecting action

= determining the accom. fee

— 0O 1 2 3 4
ax :
C otherwise
Y = {Buy(()), No-Buy( X )} c 01 2 3
Learner (= seller)l Adversaryl opportunity loss feedback L —|1C C O 1 2
- User’s evaluation price cC C C O 1
$90 — $40 = $50 ¢ c c ¢ O
Hotel owner ERSha Buy . x<a
[accomm. fee $40] feedback matrix x> a
? , Use if accomm. fee < $90 d = { O ifx>a O O Q O O
=2 = .
-1 = - X otherwise | O O O O
- . ‘<
: , $ t.
defcides acfcomn{1§;1atior}$ ]fce}e |accomm. P $80| is (- $58 (—C%Iflis() )< $0) No-buy =] X X Q Q O
of room from ey SRS ERALZ SRR
Use if accomm. fee < $50 X X X O O
t= T84] TB4L ®® X x x x O
xX<da

R. Kleinberg and T. Leighton, The value of knowing a demand curve: Bounds on regret for online posted-price auctions. In FOCS 2003.
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Example 2. Apple Tasing, Matching Pennies ixeinboid, Littestone & Long 19921

® Sequentially determining whether emails received in the mailbox are spam or ham (not

spam)
- C
® Three possible actions when labeling emails: | |
spam? — I Reliable Credit Card

|. Label as spam (P) —
2. Label as ham (N) ham? — Bl University

| I University
3. Consulting with humans to obtain the correct label Slack

(Oonly in this case, the true label can only be observed)

0  onop None None
P=N Cnop > O :failure cost of N to P None None
q q cp_,N > O :failure cost of P to N P N

g > 0 : cost of asking the expert

D. P. Helmbold, N. Littlestone, and P. M. Long, Apple tasting and nearly one-sided learning. In FOCS 1992.
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Classification of Partial Monitoring Games isarsk, psi & szepesvari 2010, 2011

[Lattimore & Szepesvari 2019]

* PM games fall into four classes based on their minimax regret R/(G) =inf, max, _, Ry(r,(x),G)

(informal, stochastic)

Taking pair of actions a, b € [k] is enough

Trivial: R(G) = 0
locally
S—

to know (L, — L,)'v*
PM Fasy: R (G) = @(ﬁ) observable b
games —
Hard: R(G) = ©(T%?) globally
observable

Taking pair of actions a, b € [k] can be
NOT enough to know (L, — L) v*
but taking all actions is enough

Hopeless: RA(G) = Q(T)

G. Barték, D. Pél, and Cs. Szepesvari. Toward a classification of finite partial-monitoring games. In ALT 2010.
G. Barték, D. Pél, and Cs. Szepesvdri. Minimax regret of finite partial-monitoring games in stochastic environments. In COLT 2011.
T. Lattimore and Cs. Szepesvdri. Cleaning up the neighborhood: A full classification for adversarial partial monitoring. In ALT 2019.
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Three Environments in Partial Monitoring

1.1.d
® Stochastic env: X, v* € &, (dist. over outcomes) Adversarial env: Pessimistic

® Adversarial env: x, arbitrarily decided ; ,
= Intermediate env ...?

- | Stochastic env: Optimistic E

® Stochastic env w/ adversarial corruptions (for PM)
(A MAB version was considered [Lykouris, Mirrokni & Leme 2018] )

. adversarial noise , ,
Outcomes sampled in i.i.d. manner Outcomes with noise
at most C

ﬁ
Xiyoon Xp (@@

Xis eees Xp ~ UF
T B o
BOYO8 C = [thl HLext — Lex;Hoo] C = 0 — stochastic regime

C = T — adversarial regime

Q. Can we achieve “best” in all regimes?

T. Lykouris, V. Mirrokni, and R.P. Leme. Stochastic bandits robust to adversarial corruptions. In STOC 2018.



T-lto-Honda (ALT2023):
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FTRL with Shannon entropy and “Exploration-by-Optimization”

® | ocally observable games

Corruption level: C = [E[Z,;T:1 ||Lext — Lex;lloo], X, ~ U*

Stochastic Adversarial Stochastic w/ Corruptions
[T-Honda-Sugiyama 20] O(log T) NA NA
[Lattimore-Szepesvari 20]  NA O(ﬁ) NA
[T-Ito-Honda 23] O((log T)*) O(/TlogT) O((log T)* +1/Clog T)
® Globally observable games
Stochastic Adversarial Stochastic w/ Corruptions
[Lattimore-Szepesvari 20]  NA O(T*") NA
[T-Ito-Honda 23] O((log T)?) O((T log T)*°) O((log T)* + (C log T)*?)

T. Tsuchiya, J. Honda, and M. Sugiyama. Analysis and design of Thompson sampling for stochastic partial monitoring. In NeurlPS 2020.
T. Lattimore and Cs. Szepesvdri. Exploration by optimisation in partial monitoring. In COLT 2020.
T. Tsuchiya, S. Ito, and J. Honda. Best-of-both-worlds algorithms for partial monitoring. In ALT 2023.



26/ 29
Outline

® |ntroduction
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Case Study 2. Game-dependency and BOBW in PM

® Partial monitoring: Very general framework for online decision-making
under abstract feedback

® Limitation: Formulations and algorithms are conservative and (sometimes) not practical

® Desirable to automatically achieve regret that depends on the inherent difficulty of the
problem being solved

Hierarchical structure of (Locally observable) partial monitoring

. . . clogT 32
online decision-making problems Stoc. 0( A ) Adv. 0<mk \ﬁ)

dynamically achieve the optimality
defined by the structures of L and ¢

Multi-armed bandits .~ Dynamic pricing

klog T . Stoc. OC(...) .
Stoc. O : ) . Ade 0. game-dependent bounds
Adv. 0( kT) PO L - [Lattimore & Szepesvari 2020]
. Expert advice

T. Lattimore and Cs. Szepesvdri. Exploration by optimisation in partial monitoring. In COLT 2020.
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2. Regret Upper Bounds

Theorem (informal) For locally observable partial monitoring games, by SPA learning rate,

o, V.,V : variables dependent on
th:iog(k)log(l +7) | +o(logT) problem’s inherent difficulty

lllll

T

=1

Adversarial Env. Ry <[t [\

Corrupted 0( r ﬂViog(T Nog(kT) | J Cr ﬂ::?__:iog(T Nog(kT)

Stochastic Env. Ry = A A ) + o(log T')

min min

Existing bounds: the value for ;| : is replaced with the worst-case scenario of the hardest problems.
< Our bounds: if the game is easier (possibly unknown), the value adjusts accordingly.
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Summary: Stability-Penalty-Adaptive FTRL

The main term of regret upper bound of FTRL

T T
Reg . = E ( . )ht+1+ E 1,2 . Multi-armed bandits
[

tzl nt+1 f:1 of ¢ .
penalty stability Sparsity-dependent bound
and best-of-both-worlds guarantee

lllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll
* *

L

: Stability-penalty-adaptive learning rate
. C14s .

f1 =P, A 2. Partial monitoring
\/cz Zh + Zt:ll Zheiq Game-dependent bound
............. l and best-of-both-worlds guarantee
Regret bound jointly Sp I :
: Do ~ . : Thank you!
: Reg .. = O h ey | 4
::apbei:::l;?\a::enalty = \62 Tl T t_zl “liel | paper: arxiv.org/abs/2305.1730]|

.
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