A Simple and Adaptive Learning Rate for FTRL in Online Learning with Minimax Regret of $\Theta(T^{2/3})$ and its Application to Best-of-Both-Worlds

Taira Tsuchiya and Shinji Ito

The University of Tokyo & RIKEN

September 28, 2024

General Online Learning Framework

Given a finite action set $A = [k] := \{1, ..., k\}$ and an observation set \mathcal{O}

for t = 1, 2, ..., T do

Environment determines a loss function $\ell_t \colon \mathcal{A} \to [0,1]$

Learner selects an action $A_t \in \mathcal{A}$ based on past observations without knowing ℓ_t Learner then suffers a loss $\ell_t(A_t)$ and observes a feedback $o_t \in \mathcal{O}$

General Online Learning Framework

Given a finite action set $A = [k] := \{1, \dots, k\}$ and an observation set \mathcal{O}

for t = 1, 2, ..., T do

Environment determines a loss function $\ell_t \colon \mathcal{A} \to [0,1]$

Learner selects an action $A_t \in \mathcal{A}$ based on past observations without knowing ℓ_t Learner then suffers a loss $\ell_t(A_t)$ and observes a feedback $o_t \in \mathcal{O}$

Learner's Goal: Minimize the **(pseudo-)regret** R_T

$$\mathsf{R}_T = \mathbb{E} \Bigg[\sum_{t=1}^T \ell_t(A_t) - \sum_{t=1}^T \ell_t(a^*) \Bigg] \quad ext{for} \quad a^* \in \operatornamewithlimits{arg\,min}_{a \in \mathcal{A}} \mathbb{E} \Bigg[\sum_{t=1}^T \ell_t(a) \Bigg]$$

General Online Learning Framework

Given a finite action set $A = [k] := \{1, \dots, k\}$ and an observation set \mathcal{O}

for t = 1, 2, ..., T do

Environment determines a loss function $\ell_t \colon \mathcal{A} \to [0,1]$

Learner selects an action $A_t \in \mathcal{A}$ based on past observations without knowing ℓ_t Learner then suffers a loss $\ell_t(A_t)$ and observes a feedback $o_t \in \mathcal{O}$

Learner's Goal: Minimize the (pseudo-)regret R_T

$$\mathsf{R}_T = \mathbb{E} \left[\sum_{t=1}^T \ell_t(A_t) - \sum_{t=1}^T \ell_t(a^*) \right] \quad ext{for} \quad a^* \in \operatornamewithlimits{arg\,min}_{a \in \mathcal{A}} \mathbb{E} \left[\sum_{t=1}^T \ell_t(a) \right]$$

Examples of this framework

- expert problem: observe entire loss vectors $o_t = \ell_t \in [0,1]^k$
- multi-armed bandits: observe a loss of chosen arm $o_t = \ell_t(A_t)$

Follow-the-Regularized-Leader (FTRL)

A highly powerful framework for such online learning problems

Select an action selection probability vector q_t over \mathcal{A} by minimizing the sum of cumulative (estimated) loss $\sum_{s=1}^{t-1} \widehat{\ell}_s(q)$ so far plus convex regularizer ψ :

$$q_t \in rg \min_{q \in \mathcal{P}_k} \left\{ \sum_{s=1}^{t-1} \widehat{\ell}_s(q) + eta_t \psi(q)
ight\}, \quad A_t \sim q_t$$

- \mathcal{P}_k : the set of probability distributions over $\mathcal{A} = [k]$
- $\beta_t > 0$: (a reciprocal of) learning rate at round t

Follow-the-Regularized-Leader (FTRL)

A highly powerful framework for such online learning problems

Select an action selection probability vector q_t over \mathcal{A} by minimizing the sum of cumulative (estimated) loss $\sum_{s=1}^{t-1} \widehat{\ell}_s(q)$ so far plus convex regularizer ψ :

$$q_t \in rg \min_{q \in \mathcal{P}_k} \left\{ \sum_{s=1}^{t-1} \widehat{\ell}_s(q) + eta_t \psi(q)
ight\}, \quad A_t \sim q_t$$

- \mathcal{P}_k : the set of probability distributions over $\mathcal{A} = [k]$
- $\beta_t > 0$: (a reciprocal of) learning rate at round t

FTRL can perform adaptively to various properties of underlying loss functions by designing its regularizer ψ and learning rate $(\beta_t)_t!$

 \rightarrow Q. How to tune the learning rate?

Stability-Penalty Decomposition

The regret of FTRL is roughly bounded as

$$\mathsf{R}_T \lesssim \sum_{t=1}^T rac{z_t}{eta_t} + eta_1 h_1 + \sum_{t=2}^T (eta_t - eta_{t-1}) h_t \ .$$
stability term

- stability term: large when the difference in FTRL outputs, q_t and q_{t+1} , is large
- **penalty** term: due to the strength of the regularizer

There is a tradeoff between these two terms.

Examples of z_t and h_t

When using negative Shannon entropy $-H(\cdot)$ in MAB [Aue+02], penalty is $h_t = H(q_t)$ or $h_t = \log k$, stability is $z_t = \mathbb{E}[\|\widehat{\ell}_t\|_{(\nabla^2 \psi(q_t))^{-1}}^2]$.

Adaptive learning rates allow us to achieve various adaptive bounds *e.g.*, data-dependent bounds (first-order/second-order/path-length bounds), best-of-both-worlds bounds

• Use **empirical** stability $(z_s)_{s=1}^{t-1}$ and **worst-case** penalty terms $h_{\text{max}} \ge \max_t h_t$ e.g., AdaGrad [MS10; DHS11], first-order algorithms [AHR12], and many!

$$1/eta_t = \sqrt{rac{\mathsf{const}}{\mathsf{const} + \sum_{s=1}^{t-1} z_s}}$$

Adaptive learning rates allow us to achieve various adaptive bounds *e.g.*, data-dependent bounds (first-order/second-order/path-length bounds), best-of-both-worlds bounds

• Use **empirical** stability $(z_s)_{s=1}^{t-1}$ and **worst-case** <u>penalty</u> terms $h_{\text{max}} \ge \max_t h_t$ e.g., AdaGrad [MS10; DHS11], first-order algorithms [AHR12], and many!

$$1/eta_t = \sqrt{rac{\mathsf{const}}{\mathsf{const} + \sum_{s=1}^{t-1} z_s}}$$

• Use **empirical** penalty $(h_s)_{s=1}^{t-1}$ and **worst-case** stability terms $z_{\text{max}} \ge \max_t h_t$ for best-of-both-worlds bounds e.g., [ITH22; TIH23a]

$$eta_1 > 0 \ , \quad eta_{t+1} = eta_t + rac{\mathrm{const}}{\sqrt{\mathrm{const} + \sum_{s=1}^{t-1} h_{s+1}}}$$

Adaptive learning rates allow us to achieve various adaptive bounds *e.g.*, data-dependent bounds (first-order/second-order/path-length bounds), best-of-both-worlds bounds

• Use **empirical** stability $(z_s)_{s=1}^{t-1}$ and **worst-case** <u>penalty</u> terms $h_{\text{max}} \ge \max_t h_t$ e.g., AdaGrad [MS10; DHS11], first-order algorithms [AHR12], and many!

$$1/\beta_t = \sqrt{\frac{\mathsf{const}}{\mathsf{const} + \sum_{s=1}^{t-1} z_s}}$$

• Use **empirical** penalty $(h_s)_{s=1}^{t-1}$ and **worst-case** stability terms $z_{\text{max}} \ge \max_t h_t$ for best-of-both-worlds bounds *e.g.*, [ITH22; TIH23a]

$$eta_1 > 0 \,, \quad eta_{t+1} = eta_t + rac{\mathrm{const}}{\sqrt{\mathrm{const} + \sum_{s=1}^{t-1} h_{s+1}}}$$

 Use both empirical stability and <u>penalty</u> [TIH23b; JLL23; ITH24] for data-dependent bounds and best-of-both-worlds bounds

Adaptive learning rates allow us to achieve various adaptive bounds *e.g.*, data-dependent bounds (first-order/second-order/path-length bounds), best-of-both-worlds bounds

• Use **empirical** stability $(z_s)_{s=1}^{t-1}$ and **worst-case** <u>penalty</u> terms $h_{\text{max}} \ge \max_t h_t$ e.g., AdaGrad [MS10; DHS11], first-order algorithms [AHR12], and many!

$$1/eta_t = \sqrt{rac{\mathsf{const}}{\mathsf{const} + \sum_{s=1}^{t-1} z_s}}$$

• Use **empirical** penalty $(h_s)_{s=1}^{t-1}$ and **worst-case** stability terms $z_{\text{max}} \ge \max_t h_t$ for best-of-both-worlds bounds e.g., [ITH22; TIH23a]

$$eta_1 > 0 \,, \quad eta_{t+1} = eta_t + rac{\mathrm{const}}{\sqrt{\mathrm{const} + \sum_{s=1}^{t-1} h_{s+1}}}$$

 Use both empirical stability and <u>penalty</u> [TIH23b; JLL23; ITH24] for data-dependent bounds and best-of-both-worlds bounds

Almost all adaptive learning rates are for problems with a minimax regret of $\Theta(\sqrt{T})$ \leftrightarrow Limited investigation into problems with a minimax regret of $\Theta(T^{2/3})$

Research Questions

There are many important online learning problems with a minimax regret of $\Theta(T^{2/3})$:

- partial monitoring with global observability [BPS11; LS19]
- ullet graph bandits with weak observability [Alo+15]
- bandits with paid observations [Sel+14]
- dueling bandits [SKM21]
- online ranking [CT17]
- bandits with switching costs [Dek+14]

Research Questions

There are many important online learning problems with a minimax regret of $\Theta(T^{2/3})$:

- partial monitoring with global observability [BPS11; LS19]
- graph bandits with weak observability [Alo+15]
- bandits with paid observations [Sel+14]
- dueling bandits [SKM21]
- online ranking [CT17]
- bandits with switching costs [Dek+14]

Research Question

Can we provide a unified adaptive learning rate framework for online learning with a minimax regret of $\Theta(T^{2/3})$, which allows us to achieve a certain adaptivity?

Objective Function that Adaptive Learning aims to Minimize

In online learning with the minimax regret of $\Theta(T^{2/3})$, it is common to use forced exploration for FTRL:

$$q_t \in \mathop{\mathrm{arg\,min}}_{q \in \mathcal{P}_k} \left\{ \sum_{s=1}^{t-1} \widehat{\ell}_s(q) + \beta_t \psi(q)
ight\}, \quad A_t \sim p_t = (1-\gamma_t) q_t + \gamma_t u \quad \text{for } u \in \mathcal{P}_k$$

Objective Function that Adaptive Learning aims to Minimize

In online learning with the minimax regret of $\Theta(T^{2/3})$, it is common to use forced exploration for FTRL:

$$q_t \in \mathop{\mathrm{arg\,min}}_{q \in \mathcal{P}_k} \left\{ \sum_{s=1}^{t-1} \widehat{\ell}_s(q) + \beta_t \psi(q)
ight\}, \quad A_t \sim p_t = (1-\gamma_t)q_t + \gamma_t u \quad ext{for } u \in \mathcal{P}_k$$

The regret of FTRL with a somewhat large exploration rate γ_t is known to be bounded as

$R_{T} \lesssim \sum_{t=1}^{T} \frac{z_{t}}{\beta_{t} \gamma_{t}} + \sum_{t=1}^{T} (\beta_{t} - \beta_{t-1}) h_{t} + \sum_{t=1}^{T} \gamma_{t}$ $\text{stability term} \qquad \text{penalty term} \qquad \text{bias term} \qquad (1)$

Objective Function that Adaptive Learning aims to Minimize

In online learning with the minimax regret of $\Theta(\mathcal{T}^{2/3})$, it is common to use forced exploration for FTRL:

$$q_t \in \mathop{\mathrm{arg\,min}}_{q \in \mathcal{P}_k} \left\{ \sum_{s=1}^{t-1} \widehat{\ell}_s(q) + \beta_t \psi(q)
ight\}, \quad A_t \sim p_t = (1-\gamma_t) q_t + \gamma_t u \quad \text{for } u \in \mathcal{P}_k$$

The regret of FTRL with a somewhat large exploration rate γ_t is known to be bounded as

$$R_{T} \lesssim \sum_{t=1}^{T} \frac{z_{t}}{\beta_{t} \gamma_{t}} + \sum_{t=1}^{T} (\beta_{t} - \beta_{t-1}) h_{t} + \sum_{t=1}^{T} \gamma_{t}$$

$$\text{stability term} \qquad \text{penalty term} \qquad \text{bias term} \qquad (1)$$

Goal: construct adaptive learning rate that minimizes (1) under the constraints that $(\beta_t)_t$ is non-decreasing and β_t depends on $(z_{1:t}, h_{1:t})$ or $(z_{1:t-1}, h_{1:t})$.

Step 1: Choose Exploration Rate γ_t

A naive way: choose $\gamma_t = \sqrt{z_t/\beta_t}$ so that the stability term and the bias term match.

 \rightarrow this choice does not work well because to obtain a regret bound of (1), a lower bound of $\gamma_t > u_t/\beta_t$ for some $u_t > 0$ is needed.

(This lower bound is used to control the magnitude of the loss estimator $\widehat{\ell}_t$.)

Step 1: Choose Exploration Rate γ_t

A naive way: choose $\gamma_t = \sqrt{z_t/\beta_t}$ so that the stability term and the bias term match.

 \rightarrow this choice does not work well because to obtain a regret bound of (1), a lower bound of $\gamma_t \ge u_t/\beta_t$ for some $u_t > 0$ is needed.

(This lower bound is used to control the magnitude of the loss estimator $\widehat{\ell}_t$.)

Alternative solution: consider the exploration rate of

$$\gamma_t = \gamma_t' + \frac{u_t}{\beta_t}$$
 for $u_t > 0$

With these choices, setting $\gamma_t' = \sqrt{z_t/\beta_t}$ yields

$$\begin{aligned} \mathsf{Eq.}(1) &\leq \sum_{t=1}^{T} \left(\frac{z_t}{\beta_t \gamma_t'} + (\beta_t - \beta_{t-1}) h_t + \left(\gamma_t' + \frac{u_t}{\beta_t} \right) \right) \\ &= \sum_{t=1}^{T} \left(2 \sqrt{\frac{z_t}{\beta_t}} + \frac{u_t}{\beta_t} + \underbrace{(\beta_t - \beta_{t-1}) h_t}_{\mathsf{penalty}} \right) =: F(\beta_{1:T}, z_{1:T}, u_{1:T}, h_{1:T}) \,. \end{aligned}$$

Step 2: Choose Learning Rate β_t

<u>Idea</u>: choose β_t so that <u>stability</u> + <u>bias terms</u> and <u>penalty term</u> match! (inspired by [ITH24])

$$2\sqrt{\frac{z_t}{\beta_t}} + \frac{u_t}{\beta_t} = \underline{(\beta_t - \beta_{t-1})h_t}$$
 (2)

Inspired by the above matching, consider

Stability-Penalty-Bias Matching (SPB-Matching, Rule 2 in the paper)

$$\beta_t = \beta_{t-1} + \frac{1}{\widehat{h}_t} \left(2\sqrt{\frac{z_{t-1}}{\beta_{t-1}}} + \frac{u_{t-1}}{\beta_{t-1}} \right)$$
 and $\gamma_t = \sqrt{z_t/\beta_t} + u_t/\beta_t$

Assume that when choosing β_t , we have an access to $\hat{h}_t \geq h_t$.

Designed by following the simple principle of matching the stability, penalty, and bias elements!

Main Result (1): SPB-matching

Theorem

If learning rate β_t is given by SPB-matching, then for all $\epsilon > 1/T$,

$$\begin{split} &F(\beta_{1:T}, z_{1:T}, u_{1:T}, h_{1:T}) \\ &\lesssim \min \left\{ \left(\sum_{t=1}^{T} \sqrt{z_t \widehat{h}_{t+1} \log(\epsilon T)} \right)^{\frac{2}{3}} + \left(\sqrt{z_{\mathsf{max}} \widehat{h}_{\mathsf{max}}} / \epsilon \right)^{\frac{2}{3}}, \left(\sum_{t=1}^{T} \sqrt{z_t \widehat{h}_{\mathsf{max}}} \right)^{\frac{2}{3}} \right\} \\ &+ \min \left\{ \sqrt{\sum_{t=1}^{T} u_t \widehat{h}_{t+1} \log(\epsilon T)} + \sqrt{u_{\mathsf{max}} \widehat{h}_{\mathsf{max}} / \epsilon}, \sqrt{\sum_{t=1}^{T} u_t \widehat{h}_{\mathsf{max}}} \right\}. \end{split}$$

- Depending on the stability component z_t and the penalty component h_t simultaneously
- Different from the existing stability–penalty adaptive type bounds $O\left(\sqrt{z_t \hat{h}_{t+1} \log T}\right)$ in [TIH23b; JLL23; ITH24]

Application: Best-of-Both-Worlds Algorithms

Best-of-Both-Worlds (BOBW) algorithm: achieve a near-optimal regret for stochastic and adversarial envs **simultaneously**

FTRL is known to be useful for constructing BOBW algorithms.

Main Result (2):

BOBW for Problems with a Minimax Regret of $\Theta(T^{2/3})$

FTRL with α -Tsallis entropy $H_{\alpha}(p) = \frac{1}{\alpha} \sum_{i=1}^{k} (p_i^{\alpha} - p_i)$: $q_t = \arg\min_{p \in \mathcal{P}_k} \left\{ \sum_{s=1}^{t-1} \langle \widehat{\ell}_t, p \rangle + \beta_t (-H_{\alpha}(p)) + \bar{\beta} (-H_{\bar{\alpha}}(p)) \right\}, \quad \alpha \in (0,1), \ \bar{\alpha} = 1 - \alpha,$

Theorem (informal)

The FTRL with **SPB-matching** β_t for z_t and h_t satisfying a condition achieves

$$\mathsf{R}_{\mathcal{T}} \lesssim egin{cases} (z_{\mathsf{max}} h_1)^{1/3} \, \mathcal{T}^{2/3} + \sqrt{u_{\mathsf{max}} h_1 \, \mathcal{T}} & \textit{adversarial} \ rac{
ho}{\Delta^2} \log ig(\mathcal{T} \Delta^2 ig) + ig(rac{C^2
ho}{\Delta^2} \log ig(rac{\mathcal{T} \Delta}{C} ig) ig)^{1/3} & \textit{corrupted stochastic} \ rac{
ho}{\Delta^2} \log ig(\mathcal{T} ig) & \textit{stochastic} \end{cases}$$

for a problem-dependent constant $\rho > 0$.

The condition can be satisfied in several problems with a minimax regret of $\Theta(T^{2/3})\downarrow$

Case Study (1): Partial Monitoring with Global Observability

Partial monitoring: a general sequential decision-making problem with limited feedback

Consider PM game $\mathbf{G} = (\mathcal{L}, \Phi)$ with k-actions and d-outcomes for loss matrix $\mathcal{L} \in [0, 1]^{k \times d}$, feedback matrix $\Phi \in \Sigma^{k \times d}$ (Σ : the set of feedback symbols)

Learner observes $\mathcal L$ and Φ

for t = 1, 2, ..., T do

Environment determines an outcome $x_t \in \{1,\ldots,d\}$

Learner selects an action $A_t \in \mathcal{A}$ based on past observations without knowing x_t Learner then suffers an **unobserved** loss \mathcal{L}_{A_t,x_t} and observes a symbol $\Phi_{A_t,x_t} \in \Sigma$

Goal: Minimize the regret

$$\mathsf{R}_T = \mathbb{E}\Big[\textstyle\sum_{t=1}^T \mathcal{L}_{A_t,\mathsf{x}_t} - \textstyle\sum_{t=1}^T \mathcal{L}_{a^*,\mathsf{x}_t}\Big] \quad \text{for} \quad a^* = \arg\min_{a \in \{1,\dots,k\}} \mathbb{E}\Big[\textstyle\sum_{t=1}^T \mathcal{L}_{a,\mathsf{x}_t}\Big]$$

There exists a class called **globally observable** games with minimax regret of $\Theta(T^{2/3})$, which is characterized by the relationship between \mathcal{L} and Φ .

Regret bounds for globally observable partial monitoring. T: the number of rounds, k: the number of actions, Δ : minimum suboptimality gap,

 $\textit{c}_{\mathcal{G}}$: a game-dependent constant, MS-type: an improved bound by [MS21]

References	Stochastic	Adversarial	Corrupted
[KHN15]	$D \log T$	-	-
[LS20]	_	$(c_{\mathcal{G}}T)^{2/3}(\log k)^{1/3}$	_
[TIH23a]	$\frac{c_{\mathcal{G}}^2 \log T \log(kT)}{\Delta^2}$	$(c_{\mathcal{G}}T)^{2/3}(\log T \log(kT))^{1/3}$	✓
[TIH24]	$\frac{c_{\mathcal{G}}^2 k \log T}{\Delta^2}$	$(c_{\mathcal{G}}T)^{2/3}(\log T)^{1/3}$	✓
Ours	$\frac{c_{\mathcal{G}}^2 \log k \log T}{\Delta^2}$	$(c_{\mathcal{G}}T)^{2/3}(\log k)^{1/3}$	√(MS-type)

Case Study (2): Graph Bandits with Weak Observability

Graph bandits: interpolation and extrapolation of expert problems and multi-armed bandits

Learner observes a directed graph G = (V, E) for $V = \{1, ..., k\}$

for t = 1, 2, ..., T do

Environment determines a loss vector $\ell_t \colon V \to \mathbb{R}$

Learner selects an action $A_t \in \mathcal{A}$ based on past observations without knowing ℓ_t Learner then suffers a loss $\ell(A_t)$ and observes a set of losses $\{\ell_t(a): (A_t, a) \in E\}$

Goal: Minimize the regret R_T

There exists a class called **weakly observable** graphs with minimax regret of $\Theta(T^{2/3})$, characterized by the structure of feedback graph G.

Figure: a weakly observable graph

Regret bounds for weakly observable graph bandits with no self-loops.

T: the number of rounds, k: the number of actions, Δ : minimum suboptimality gap,

 δ : domination number (satisfying $\delta^* \leq \delta$), δ^* : fractional domination number (satisfying $\delta^* \leq \delta$)

References	Stochastic	Adversarial	Corrupted
[Alo+15]	_	$(\delta \log k)^{1/3} T^{2/3}$	-
[Che+21]	_	$(\delta^* \log k)^{1/3} T^{2/3}$	_
[ITH22]	$\frac{\delta \log T \log(kT)}{\Delta^2}$	$(\delta \log T \log(kT))^{1/3} T^{2/3}$	✓
[DWZ23] ^a	$\frac{\delta \log k \log T}{\Delta^2}$	$(\delta \log k)^{1/3} T^{2/3}$	✓
Ours	$\frac{\delta^* \log k \log T}{\Delta^2}$	$(\delta^* \log k)^{1/3} T^{2/3}$	√(MS-type)

^a A hierarchical reduction-based approach, rather than a direct FTRL method, discarding past observations as doubling-trick. The variable δ can be replaced with δ^* .

Summary

- Investigated online learning with a minimax regret of $\Theta(T^{2/3})$
- Established a simple and adaptive learning rate framework called stability-penalty-bias matching (SPB-matching)
- FTRL with SPB-matching and Tsallis entropy regularization improves the existing BOBW regret bounds based on FTRL for partial monitoring with global observability and graph bandits with weak observability
- Future work: investigate if we can apply SPB-matching to other problems with a minimax regret of $\Theta(\mathcal{T}^{2/3})$, such as bandits with switching costs [Dek+14] and dueling bandits with Borda winner [SKM21]

	TEEE Transactions on Information Theory 58.7 (2012), pp. 4104–4175.
[Alo+15]	Noga Alon et al. "Online Learning with Feedback Graphs: Beyond Bandits". In: Proceedings of The 28th Conference on Learning Theory. Vol. 40. 2015, pp. 23–35.
[Aue+02]	Peter Auer et al. "The Nonstochastic Multiarmed Bandit Problem". In: SIAM Journal on Computing 32.1 (2002), pp. 48–77.
[BPS11]	Gábor Bartók, Dávid Pál, and Csaba Szepesvári. "Minimax Regret of Finite Partial-Monitoring Games in Stochastic Environments". In: Proceedings of the 24th Annual Conference on Learning Theory. Vol. 19. 2011, pp. 133–154.
[Che+21]	Houshuang Chen et al. "Understanding Bandits with Graph Feedback". In: Advances in Neural Information Processing Systems. Vol. 34. 2021, pp. 24659–24669.
[CT17]	Sougata Chaudhuri and Ambuj Tewari. "Online Learning to Rank with Top-k Feedback". In: Journal of Machine Learning Research 18:103 (2017), pp. 1–50.
[Dek+14]	Ofer Dekel et al. "Bandits with switching costs: $T^{2/3}$ regret". In: Proceedings of the Forty-Sixth Annual ACM Symposium on Theory of Computing. 2014, pp. 459–467.
[DHS11]	John Duchi, Elad Hazan, and Yoram Singer. "Adaptive Subgradient Methods for Online Learning and Stochastic Optimization". In: Journal of Machine Learning Research 12.61 (2011), pp. 2121–2159.
[DWZ23]	Chris Dann, Chen-Yu Wei, and Julian Zimmert. "A Blackbox Approach to Best of Both Worlds in Bandits and Beyond". In: Proceedings of Thirty Sixth Conference on Learning Theory. Vol. 195. 2023, pp. 5503–5570.
[ITH22]	Shinji Ito, Taira Tsuchiya, and Junya Honda. "Nearly Optimal Best-of-Both-Worlds Algorithms for Online Learning with Feedback Graphs". In: Advances in Neural Information Processing Systems. Vol. 35. 2022, pp. 28631–28643.
[ITH24]	Shinji Ito, Taira Tsuchiya, and Junya Honda. "Adaptive Learning Rate for Follow-the-Regularized-Leader: Competitive Analysis and

IEEE Transactions on Information Theory EQ 7 (2012) pp. 4164-4175

Best-of-Both-Worlds". In: arXiv preprint arXiv:2403.00715 (2024).

Jacob D. Abernethy, Elad Hazan, and Alexander Rakhlin. "Interior-Point Methods for Full-Information and Bandit Online Learning". In:

Tiancheng Jin, Junyan Liu, and Haipeng Luo. "Improved Best-of-Both-Worlds Guarantees for Multi-Armed Bandits: FTRL with General Regularizers and Multiple Optimal Arms". In: Advances in Neural Information Processing Systems. Vol. 36, 2023, pp. 30918–30978.

Junpei Komiyama, Junya Honda, and Hiroshi Nakagawa, "Regret Lower Bound and Optimal Algorithm in Finite Stochastic Partial

Monitoring", In: Advances in Neural Information Processing Systems, Vol. 28, 2015, pp. 1792–1800.

[AHR12]

[JLL23]

[KHN15]

[LS20]	Tor Lattimore and Csaba Szepesvári. "Exploration by Optimisation in Partial Monitoring". In: Proceedings of Thirty Third Conference on Learning Theory. Vol. 125. 2020, pp. 2488–2515.
[MS10]	H. Brendan McMahan and Matthew J. Streeter. "Adaptive Bound Optimization for Online Convex Optimization". In: The 23rd Conference on Learning Theory. 2010, pp. 244–256.
[MS21]	Saeed Masoudian and Yevgeny Seldin. "Improved Analysis of the Tsallis-INF Algorithm in Stochastically Constrained Adversarial Bandits and Stochastic Bandits with Adversarial Corruptions". In: Proceedings of Thirty Fourth Conference on Learning Theory. Vol. 134. 2021, pp. 3330–3350.
[Sel+14]	Yevgeny Seldin et al. "Prediction with Limited Advice and Multiarmed Bandits with Paid Observations". In: Proceedings of the 31st International Conference on Machine Learning. Vol. 32. 1. 2014, pp. 280–287.
[SKM21]	Aadirupa Saha, Tomer Koren, and Yishay Mansour. "Adversarial Dueling Bandits". In: Proceedings of the 38th International Conference on Machine Learning. Vol. 139. 2021, pp. 9235–9244.
[TIH23a]	Taira Tsuchiya, Shinji Ito, and Junya Honda. "Best-of-Both-Worlds Algorithms for Partial Monitoring". In: Proceedings of The 34th International Conference on Algorithmic Learning Theory. 2023, pp. 1484–1515.

best-of-both-worlds". In: Advances in Neural Information Processing Systems. Vol. 36, 2023.

Adversarial Robustness in Partial Monitoring", In: arXiv preprint arXiv:2402.08321 (2024).

Proceedings of the 30th International Conference on Algorithmic Learning Theory. Vol. 98. 2019, pp. 529-556.

Tor Lattimore and Csaba Szepesvári, "Cleaning up the neighborhood; A full classification for adversarial partial monitoring". In:

Taira Tsuchiya, Shinii Ito, and Junya Honda, "Stability-penalty-adaptive follow-the-regularized-leader: Sparsity, game-dependency, and

Taira Tsuchiva, Shinii Ito, and Junya Honda, "Exploration by Optimization with Hybrid Regularizers: Logarithmic Regret with

[LS19]

[TIH23b]

[TIH24]