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Two-player zero-sum games

Consider a two-player zero-sum game with a payoff matrix A ∈ [−1, 1]mx×my

(mx , my : the number of actions of x- and y -players)

1. x-player and y -player simultaneously choose strategies x ∈ ∆mx and y ∈ ∆my ,
respectively. (∆m = {x ∈ [0, 1]m : ∥x∥1 = 1}: the (m − 1)-dimensional probability simplex)

2. x-player gains a (expected) payoff of x⊤Ay , and y -player incurs a loss of x⊤Ay
(thus zero-sum).
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(mx , my : the number of actions of x- and y -players)

1. x-player and y -player simultaneously choose strategies x ∈ ∆mx and y ∈ ∆my ,
respectively. (∆m = {x ∈ [0, 1]m : ∥x∥1 = 1}: the (m − 1)-dimensional probability simplex)

2. x-player gains a (expected) payoff of x⊤Ay , and y -player incurs a loss of x⊤Ay
(thus zero-sum).

We say that a strategy x is pure if x = ei for some i ∈ [mx ] := {1, . . . ,mx}.
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Two-player zero-sum games

Example 1. Rock-Paper-Scissors

x-player

y -player

0, 0 1,−1 −1, 1

0, 0

0, 0

1,−1

1,−1

−1, 1

−1, 1

A =

 0 1 −1
−1 0 1
1 −1 0


payoff matrix of the game
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Nash equilibrium

Nash equilibrium: a pair of (possibly randomized) actions in which no player has an
incentive to deviate

Definition (Nash equilibrium)

A pair of probability distributions (x∗, y∗) over action sets [mx ] and [my ] is an
ε-approximate Nash equilibrium if

x⊤Ay∗ − ε ≤ x∗⊤Ay∗ ≤ x∗⊤Ay + ε ∀x ∈ ∆mx , y ∈ ∆my .

In the Rock-Paper-Scissors example, the pair x = (1/3, 1/3, 1/3), y = (1/3, 1/3, 1/3) is a
Nash equilibrium.

A Nash equilibrium can be computed by linear programming, but ...

/ Can be computationally infeasible for large-scale payoff matrices

/ Cannot be used when the payoff matrix is unknown

→ solution: learning in games
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Learning in games

Learning in games
Multiple players interact in a shared environment,
each aiming to maximize their total rewards (= minimize their regret)
by iteratively adapting their strategies based on repeated interactions

Broader applications

• Minimax optimization (e.g., minx maxy x
⊤Ay)

• Multi-agent reinforcement learning

• Superhuman AI for poker, human-level AI for Stratego

• Alignment of LLMs

• ...
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Learning in two-player zero-sum games

Learning in two-player zero-sum games with an unknown payoff matrix A ∈ [−1, 1]mx×my

(mx , my : the number of actions of x- and y -players)

At each round t = 1, . . . ,T :

1. x-player selects a strategy x (t) ∈ ∆mx and y -player selects y (t) ∈ ∆my ;

2. x-player observes a expected reward vector g (t) = Ay (t) and
y -player observes a expected loss vector ℓ(t) = A⊤x (t);

3. x-player gains a payoff of ⟨x (t),Ay (t)⟩ = ⟨x (t), g (t)⟩ and
y -player incurs a loss of ⟨x (t),Ay (t)⟩ = ⟨y (t), ℓ(t)⟩; (thus zero-sum)
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At each round t = 1, . . . ,T :

1. x-player selects a strategy x (t) ∈ ∆mx and y -player selects y (t) ∈ ∆my ;

2. x-player observes a expected reward vector g (t) = Ay (t) and
y -player observes a expected loss vector ℓ(t) = A⊤x (t);

3. x-player gains a payoff of ⟨x (t),Ay (t)⟩ = ⟨x (t), g (t)⟩ and
y -player incurs a loss of ⟨x (t),Ay (t)⟩ = ⟨y (t), ℓ(t)⟩; (thus zero-sum)

The goal of x-/y - players is to minimize the regret (without knowing A):

• RegTx ,g = maxx∗∈∆mx

{∑T
t=1⟨x∗, g (t)⟩ −

∑T
t=1⟨x (t), g (t)⟩

}
,

• RegTy ,ℓ = maxy∗∈∆my

{∑T
t=1⟨y (t), ℓ(t)⟩ −

∑T
t=1⟨y∗, ℓ(t)⟩

}
.



9 / 42
No-regret learning dynamics and Nash equilibrium

A pair of probability distributions (x∗, y∗) over action sets [mx ] and [my ] is an
ε-approximate Nash equilibrium if

x⊤Ay∗ − ε ≤ x∗⊤Ay∗ ≤ x∗⊤Ay + ε ∀x ∈ ∆mx , y ∈ ∆my .

Theorem (Freund and Schapire 1999)

Let x̄T = 1
T

∑T
t=1 x

(t) and ȳT = 1
T

∑T
t=1 y

(t) be the average plays. Then its product

distribution (x̄T , ȳT ) is a ((RegTx ,g + RegTy ,ℓ)/T )-approximate Nash equilibrium.

→When the x- and y -players use standard online convex optimization algorithms,
we can guarantee O(1/

√
T ) convergence to a Nash eq! (w/ uncoupled dynamics)

e.g., Hedge algorithm guarantees RegTx ,g = Õ(
√
T ) and RegTy ,ℓ = Õ(

√
T ).

x (t)(i) ∝ exp(ηx
∑t−1

s=1 gs(i)) ∀i ∈ [mx ] , y (t)(i) ∝ exp(−ηy
∑t−1

s=1 ℓs(i)) ∀i ∈ [my ]

Q. Is this optimal rate in learning in games?
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Fast convergence in games

Hedge algorithm (recall g (t) = Ay (t) and ℓ(t) = A⊤x (t)):

x (t)(i) ∝ exp

(
ηx

t−1∑
s=1

gs(i)

)
∀i ∈ [mx ] , y (t)(i) ∝ exp

(
−ηy

t−1∑
s=1

ℓs(i)

)
∀i ∈ [my ]

ηx , ηy ≃ 1/
√
T : learning rate
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)
∀i ∈ [my ]
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√
T : learning rate

Optimistic Hedge algorithm (A. Rakhlin and Sridharan 2013; S. Rakhlin and Sridharan
2013; Syrgkanis et al. 2015):

x (t)(i) ∝ exp

(
ηx

(
t−1∑
s=1

gs(i) + gt−1(i)

))
, y (t)(i) ∝ exp

(
−ηy

(
t−1∑
s=1

ℓs(i) + ℓt−1(i)

))



10 / 42
Fast convergence in games

Optimistic Hedge algorithm (A. Rakhlin and Sridharan 2013; S. Rakhlin and Sridharan
2013; Syrgkanis et al. 2015):

x (t)(i) ∝ exp

(
ηx

(
t−1∑
s=1

gs(i) + gt−1(i)

))
, y (t)(i) ∝ exp

(
−ηy

(
t−1∑
s=1

ℓs(i) + ℓt−1(i)

))

Theorem (Syrgkanis et al. 2015)

If x- and y-players fully follow optimistic Hedge with constant learning rates ηx , ηy ≃ 1,

then RegTx ,g = Õ(1) and RegTy ,ℓ = Õ(1), which implies an Õ(1/T ) conv. rate to Nash.

Rough intuition: If the opponent uses a no-regret algorithm, then we can predict the
opponent’s next strategy y (t+1) (and thus gradient g (t+1) = Ay (t+1)).
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Theorem (Syrgkanis et al. 2015)

If x- and y-players fully follow optimistic Hedge with constant learning rates ηx , ηy ≃ 1,

then RegTx ,g = Õ(1) and RegTy ,ℓ = Õ(1), which implies an Õ(1/T ) conv. rate to Nash.

Q. What if the opponent does not follow optimistic Hedge with a constant learning rate?
Continuing with the algorithm may lead to a linear regret: RegTx = Ω(T ).
→ Solution (Syrgkanis et al. 2015): Monitor gradient variation

∑t−1
s=1∥g (s) − g (s+1)∥21, and if

it exceeds a threshold, switch to an algorithm with a worst-case regret of Õ(
√
T )

(e.g., Hedge with learning rate of Θ(1/
√
T ))
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Research questions

Discontinuous behavior: A slight deviation of the y -player from a given algorithm can
suddenly cause the x-player to suffer a regret of O(

√
T ) / /

honest regime
every player follows
a given algorithm

adversarial scenario
y -player does not follow
a given algorithm

RegTx

amount of deviation
by y -player

Õ(1)

Õ(
√
T )

0
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Research questions

• Can we adapt to deviations of the opponent from a given algorithm?

• Can we characterize regret and convergence rates to an equilibrium in such a
corrupted game?
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Research questions

• Can we adapt to deviations of the opponent from a given algorithm?

• Can we characterize regret and convergence rates to an equilibrium in such a
corrupted game?

Our contributions

• Establish a framework of corrupted games, in which each player may deviate
from a prescribed algorithm

• Give a nearly complete characterization of learning dynamics in corrupted
games, by deriving regret upper and lower bounds in (normal-form) two-player
zero-sum and multi-player general-sum games
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Corrupted regime in two-player zero-sum games

At each round t = 1, . . . ,T :

1. A prescribed algorithm suggests strategies x̂ (t) ∈ ∆mx and ŷ (t) ∈ ∆my ;

2. (corruption of strategies)

x-player selects a strategy x (t) ← x̂ (t) + ĉ
(t)
x and

y -player selects y (t) ← ŷ (t) + ĉ
(t)
y ;

Note: The corruption is allowed to depend arbitrarily on the past observations.

3. x-player observes a expected reward vector g (t) = Ay (t) and
y -player observes a expected loss vector ℓ(t) = A⊤x (t);

4. x-player gains a payoff of ⟨x (t), g (t)⟩ and y -player incurs a loss of ⟨y (t), ℓ(t)⟩
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(t)
x and

y -player selects y (t) ← ŷ (t) + ĉ
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(t)
y ∥1



14 / 42
Corrupted regime in two-player zero-sum games
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• Ĉx =
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t=1∥ĉ
(t)
x ∥1, C̃x =
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t=1∥c̃
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x ∥∞, and Cx = Ĉx + 2C̃x .

• Ĉy =
∑T

t=1∥ĉ
(t)
y ∥1, C̃y =
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(t)
x for g (t) = Ay (t),

y -player observes a corrupted loss vector ℓ̃(t) = ℓ(t) + c̃
(t)
y for ℓ(t) = A⊤x (t);

4. x-player gains a payoff of ⟨x(t),g (t)⟩
or ⟨x(t),g̃ (t)⟩ and y -player incurs a loss of

⟨y (t),ℓ(t)⟩
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• corrupted regime with no corruptions = the honest regime

• corrupted regime w/ C̃y = Ω(T ) = adversarial scenario for x-player
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Our algorithm: Optimistic Hedge with adaptive learning rate

Syrgkanis et al. (2015): Optimistic Hedge with constant learning rate for the honest
regime

x (t)(i) ∝ exp

(
ηx

(
t−1∑
s=1

gs(i) + gt−1(i)

))
, ηx ≃ 1 , ∀i ∈ [mx ]
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Syrgkanis et al. (2015): Optimistic Hedge with constant learning rate for the honest
regime

x (t)(i) ∝ exp

(
ηx

(
t−1∑
s=1

gs(i) + gt−1(i)

))
, ηx ≃ 1 , ∀i ∈ [mx ]

Ours: Optimistic Hedge with adaptive learning rate for the corrupted regime (not formally defined)

x (t)(i) ∝ exp

(
η
(t)
x

(
t−1∑
s=1

g̃s(i) + g̃t−1(i)

))
, η

(t)
x =

√
log+(mx)/2

log+(mx)+
∑t−1

s=1∥g̃ (s) − g̃ (s−1)∥2∞
with log+(z) = max{log z , 4}.

This is a very standard choice of learning rate (recall AdaGrad), but adjusted to satisfy

η
(t)
x ≤ 1/

√
2.



16 / 42
Main result (1): Regret upper bound in the corrupted regime

Cumulative corruption of strategies and utilities

• Ĉx =
∑T

t=1∥ĉ
(t)
x ∥1, C̃x =

∑T
t=1∥c̃

(t)
x ∥∞, and Cx = Ĉx + 2C̃x .

• Ĉy =
∑T

t=1∥ĉ
(t)
y ∥1, C̃y =

∑T
t=1∥c̃

(t)
y ∥∞, and Cy = Ĉy + 2C̃y .

Regret upper bounds of the x-player:

Honest regime Corrupted regime

Syrgkanis et al. (2015) log(mxmy ) log(mxmy ) +
√

T logmx + Cx

Ours
√

log(mxmy ) logmx min
{√

(log(mxmy ) + Cx + Cy ) logmx ,
√
T logmx

}
+Cx

The bound RegTx ,g ≲
√
Ĉy + Ĉx in the corrupted regime ...

• smoothly interpolates between the Õ(1) regret in the honest regime and the Õ(
√
T )

regret in the adversarial scenario (noting Cy ∈ [0, 3T ]).
• incentivizes players to follow the given algorithm:

▶ any deviation by an opponent incurs only a square-root penalty
√

Ĉy ,

▶ whereas a deviation by a player from the given algorithm incurs a linear penalty Ĉx .
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Regret upper bounds of the x-player:

Honest regime Corrupted regime

Syrgkanis et al. (2015) log(mxmy ) log(mxmy ) +
√

T logmx + Cx

Ours
√

log(mxmy ) logmx min
{√

(log(mxmy ) + Cx + Cy ) logmx ,
√
T logmx

}
+Cx

The bound RegTx ,g ≲
√
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16 / 42
Main result (1): Regret upper bound in the corrupted regime

Cumulative corruption of strategies and utilities

• Ĉx =
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Proof sketch of RegTx ,g ≲
√

Ĉy + Ĉx

(omitting corruption of utilities, log and const factors)

Use the standard analysis of Optimistic Hedge:

RegTx̂ ,g = max
x∗∈∆mx

{
T∑
t=1

⟨x∗, g (t)⟩ −
T∑
t=1

⟨x̂ (t), g (t)⟩

}
x̂(t): suggested strategy
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Proof sketch of RegTx ,g ≲
√

Ĉy + Ĉx

(omitting corruption of utilities, log and const factors)

Use the standard analysis of Optimistic Hedge:

RegTx̂ ,g ≲ 1

η
(T+1)
x

+
T∑
t=1

η
(t)
x ∥g (t) − g (t−1)∥2∞ −

T∑
t=1

1

4η
(t)
x

∥x̂ (t+1) − x̂ (t)∥21
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Ĉy + Ĉx
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(omitting corruption of utilities, log and const factors)
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≲

√√√√ T∑
t=1

∥g (t) − g (t−1)∥2∞ −
T∑
t=1

∥x̂ (t) − x̂ (t−1)∥21 (def of η
(t)
x & η

(t)
x ≤ 1/

√
2)

The first term is evaluated as (recalling Ĉy =
∑T

t=1∥y (t) − ŷ (t)∥1)
T∑
t=1

∥g (t) − g (t−1)∥2∞ =
T∑
t=1

∥A(y (t) − y (t−1))∥2∞ ≤
T∑
t=1

∥y (t) − y (t−1)∥21

≤ 4
T∑
t=1

∥y (t) − ŷ (t)∥21 + 4
T∑
t=1

∥ŷ (t) − ŷ (t−1)∥21 ≲ Ĉy +
T∑
t=1

∥ŷ (t) − ŷ (t−1)∥21 .
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Proof sketch of RegTx ,g ≲
√

Ĉy + Ĉx (cont’d)

Previous slide:

RegTx̂ ,g ≲

√√√√ T∑
t=1

∥g (t) − g (t−1)∥2∞ −
T∑
t=1

∥x̂ (t) − x̂ (t−1)∥21 ,

T∑
t=1

∥g (t) − g (t−1)∥2∞ ≲ Ĉy +
T∑
t=1

∥ŷ (t) − ŷ (t−1)∥21 .
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√√√√ T∑
t=1

∥g (t) − g (t−1)∥2∞ −
T∑
t=1

∥x̂ (t) − x̂ (t−1)∥21 ,

T∑
t=1

∥g (t) − g (t−1)∥2∞ ≲ Ĉy +
T∑
t=1

∥ŷ (t) − ŷ (t−1)∥21 .

Combining these two and using |RegTx̂ ,g − RegTx ,g | ≤ Ĉx give

RegTx ,g ≤ RegTx̂ ,g + Ĉx

≲

√√√√Ĉy +
T∑
t=1

∥ŷ (t) − ŷ (t−1)∥21 −
T∑
t=1

∥x̂ (t) − x̂ (t−1)∥21 + Ĉx .
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Proof sketch of RegTx ,g ≲
√

Ĉy + Ĉx (cont’d)

Combining these two and using |RegTx̂ ,g − RegTx ,g | ≤ Ĉx give

RegTx ,g ≤ RegTx̂ ,g + Ĉx

≲

√√√√Ĉy +
T∑
t=1

∥ŷ (t) − ŷ (t−1)∥21 −
T∑
t=1

∥x̂ (t) − x̂ (t−1)∥21 + Ĉx .

Similarly, we have

RegTy ,ℓ ≲

√√√√Ĉx +
T∑
t=1

∥x̂ (t) − x̂ (t−1)∥21 −
T∑
t=1

∥ŷ (t) − ŷ (t−1)∥21 + Ĉy .

Summing up these two inequalities gives ...
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Proof sketch of RegTx ,g ≲
√

Ĉy + Ĉx (cont’d)

Summing up these two inequalities gives

RegTx ,g + RegTy ,ℓ ≲

√√√√Ĉy +
T∑
t=1

∥ŷ (t) − ŷ (t−1)∥21 +

√√√√Ĉx +
T∑
t=1

∥x̂ (t) − x̂ (t−1)∥21

−
T∑
t=1

(
∥x̂ (t) − x̂ (t−1)∥21 + ∥ŷ (t) − ŷ (t−1)∥21

)
+ Ĉx + Ĉy
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Proof sketch of RegTx ,g ≲
√

Ĉy + Ĉx (cont’d)

Summing up these two inequalities gives

RegTx ,g + RegTy ,ℓ ≲

√√√√Ĉy +
T∑
t=1

∥ŷ (t) − ŷ (t−1)∥21 +

√√√√Ĉx +
T∑
t=1

∥x̂ (t) − x̂ (t−1)∥21

−
T∑
t=1

(
∥x̂ (t) − x̂ (t−1)∥21 + ∥ŷ (t) − ŷ (t−1)∥21

)
+ Ĉx + Ĉy

(Cauchy–Schwarz) ≲
√

Ĉx + Ĉy + Ĉx + Ĉy −
1

2

T∑
t=1

(
∥x̂ (t) − x̂ (t−1)∥21 + ∥ŷ (t) − ŷ (t−1)∥21

)
.
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Proof sketch of RegTx ,g ≲
√

Ĉy + Ĉx (cont’d)

Summing up these two inequalities gives
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√√√√Ĉy +
T∑
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√√√√Ĉx +
T∑
t=1

∥x̂ (t) − x̂ (t−1)∥21

−
T∑
t=1

(
∥x̂ (t) − x̂ (t−1)∥21 + ∥ŷ (t) − ŷ (t−1)∥21

)
+ Ĉx + Ĉy

(Cauchy–Schwarz) ≲
√

Ĉx + Ĉy + Ĉx + Ĉy −
1

2

T∑
t=1

(
∥x̂ (t) − x̂ (t−1)∥21 + ∥ŷ (t) − ŷ (t−1)∥21

)
.

Since RegTx ,g + RegTy ,ℓ ≥ 0 (from the definition of the Nash eq), ...
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Proof sketch of RegTx ,g ≲
√

Ĉy + Ĉx (cont’d)

Since RegTx ,g + RegTy ,ℓ ≥ 0 (from the definition of the Nash eq),

T∑
t=1

(
∥x̂ (t) − x̂ (t−1)∥21 + ∥ŷ (t) − ŷ (t−1)∥21

)
≲
√
Ĉx + Ĉy + Ĉx + Ĉy .
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Proof sketch of RegTx ,g ≲
√

Ĉy + Ĉx (cont’d)

Since RegTx ,g + RegTy ,ℓ ≥ 0 (from the definition of the Nash eq),

T∑
t=1

(
∥x̂ (t) − x̂ (t−1)∥21 + ∥ŷ (t) − ŷ (t−1)∥21

)
≲
√
Ĉx + Ĉy + Ĉx + Ĉy .

Recalling that RegTx ,g is upper bouned as

RegTx ,g ≲
√

Ĉy +
∑T

t=1∥ŷ (t) − ŷ (t−1)∥21 −
∑T

t=1∥x̂ (t) − x̂ (t−1)∥21 + Ĉx ,
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Proof sketch of RegTx ,g ≲
√

Ĉy + Ĉx (cont’d)
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≲
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√
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∑T
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∑T
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we obtain

RegTx ,g ≲
√√

Ĉx + Ĉy + Ĉx + Ĉy + Ĉx ≲
√
Ĉy + Ĉx ,

as desired.
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Proof sketch of RegTx ,g ≲
√

Ĉy + Ĉx (cont’d)

Since RegTx ,g + RegTy ,ℓ ≥ 0 (from the definition of the Nash eq),

T∑
t=1

(
∥x̂ (t) − x̂ (t−1)∥21 + ∥ŷ (t) − ŷ (t−1)∥21

)
≲
√
Ĉx + Ĉy + Ĉx + Ĉy .

Recalling that RegTx ,g is upper bouned as

RegTx ,g ≲
√

Ĉy +
∑T

t=1∥ŷ (t) − ŷ (t−1)∥21 −
∑T

t=1∥x̂ (t) − x̂ (t−1)∥21 + Ĉx ,

we obtain

RegTx ,g ≲
√√

Ĉx + Ĉy + Ĉx + Ĉy + Ĉx ≲
√
Ĉy + Ĉx ,

as desired.

Deriving the regret upper bounds for two-player zero-sum games is straightforward!
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Outline

• Introduction
▶ Two-player zero-sum games, Nash equilibrium
▶ Nash equilibrium and no-regret dynamics
▶ Fast convergence in games
▶ Research questions

• Learning in corrupted two-player zero-sum games

• Lower bounds

• Learning in corrupted multi-player general-sum games

• Conclusion and discussion
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Main result (2)-(i): Lower bound in terms of C̃x and C̃y

Defining the regret RegTx ,g̃ w.r.t. the corrupted gradients g̃1, . . . , g̃T , we can show the
following upper bound (omitted in the theorem above):

RegTx ,g̃ ≲ min
{√

(log(mxmy ) + Cx + Cy ) logmx ,
√
T logmx

}
+Ĉx .

If corruption occurs only in x-player’s observed utilities (i.e., Ĉx = Ĉy = C̃y = 0),

RegTx ,g̃ = O(

√
C̃x logmx) ,

which matches the following lower bound:

Theorem (Lower bounds in the corrupted regime)

For any learning dynamics,

(i) there exists a corrupted game with
∑T

t=1∥g (t) − g̃ (t)∥∞ ≤ C̃x such that

RegTx ,g̃ = RegTx̂ ,g̃ = Ω
(√

C̃x logmx

)
;

(there exists a corrupted game with
∑T

t=1∥ℓ(t) − ℓ̃(t)∥∞≤ C̃y such that RegT
y,ℓ̃

= RegT
ŷ,ℓ̃

= Ω
(√

C̃y logmy
)
.)
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Main result (2)-(i): Lower bound in terms of C̃x and C̃y

Construct a corrupted game with
∑T

t=1∥g
(t) − g̃ (t)∥∞ ≤ C̃x such that RegTx,g̃ = RegTx̂,g̃ = Ω

(√
C̃x logmx

)
.

Idea. Let A = 0 and use the following lower bound for online linear optimization over
simplex:

∀Alg, ∃ g̃ (1), . . . , g̃ (T0) ∈ [0, 1]mx , max
x∗∈∆mx

T0∑
t=1

⟨x∗ − x (t), g̃ (t)⟩ = Ω(
√
T0 logmx) .

Proof. For rounds t = 1, . . . , C̃x/2, the expected reward vectors g (t) are corrupted so that∑C̃x/2
t=1 ∥g (t) − g̃ (t)∥∞ ≤ C̃x , and no corruption occurs beyond this. Then, since A = 0,

RegTx ,g̃ = max
x∗∈∆mx

T∑
t=1

⟨x∗−x (t), g̃ (t)⟩= max
x∗∈∆mx


C̃x/2∑
t=1

⟨x∗−x (t), g̃ (t)⟩+
T∑

t=C̃x/2+1

⟨x∗−x (t),Ay (t)⟩


= max

x∗∈∆mx

C̃x/2∑
t=1

⟨x∗ − x (t), g̃ (t)⟩ ≥ Ω

(√
C̃x logmx

)
.
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Main result (2)-(ii):
Lower bound for the player’s own strategy deviation

Regret caused by the player’s own deviation from the suggested strategies x̂ (t), ŷ (t)

RegTx ,g ≲ min
{√

(log(mxmy ) + Cx + Cy ) logmx ,
√
T logmx

}
+Cx

If corruption occurs only in x-player’s strategies (i.e., Ĉy = C̃x = C̃y = 0),

RegTx ,g = Õ(Ĉx) ,

which matches the following lower bound:

Theorem (Lower bounds in the corrupted regime)

For any learning dynamics,

(ii) there exists a corrupted game with
∑T

t=1∥x (t) − x̂ (t)∥1 ≤ Ĉx such that

RegTx ,g = RegTx ,g̃ = Ω(Ĉx);
(there exists a corrupted game with

∑T
t=1∥y (t) − ŷ (t)∥1 ≤ Ĉy such that RegTy,ℓ = RegT

y,ℓ̃
= Ω(Ĉy ).)
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= Ω(Ĉy ).)



24 / 42
Main result (2)-(ii):
Lower bound for the player’s own strategy deviation

Construct a corrupted game with
∑T

t=1∥x
(t) − x̂ (t)∥1 ≤ Ĉx such that RegTx,g = RegTx,g̃ = Ω(Ĉx).

Idea. Construct a payoff matrix with an action with a low reward, and then design
corrupted strategies that select the action. In particular, consider

A =


1 1 · · · 1

...
1 1 · · · 1
0 0 · · · 0

 and x (t) =

{
x̂ (t) + ĉ

(t)
x = emx t = 1, . . . , Ĉx/2

x̂ (t) t = Ĉx/2 + 1, . . . ,T

Proof. For each t = 1, . . . , Ĉx/2, we also have Ay (t) = 1− emx and ⟨x (t),Ay (t)⟩ = 0
since A⊤x (t) = 0.
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Hence, for any x∗ ∈ ∆mx ,

Ĉx/2∑
t=1

⟨x∗ − x (t), g (t)⟩ =
Ĉx/2∑
t=1

⟨x∗,Ay (t)⟩ =
Ĉx/2∑
t=1

⟨x∗, 1− emx ⟩ =
Ĉx

2
(1− x∗(mx)) , (1)

where we used ⟨x (t),Ay (t)⟩ = 0, Ay (t) = 1− emx , and x∗ ∈ ∆mx . Therefore,

RegTx ,g = max
x∗∈∆mx

T∑
t=1

⟨x∗ − x (t), g (t)⟩

= max
x∗∈∆mx


Ĉx/2∑
t=1

⟨x∗ − x (t), g (t)⟩+
T∑

t=Ĉx/2+1

⟨x∗ − x (t),Ay (t)⟩


(by (1)) = max

x∗∈∆mx

 Ĉx

2
(1− x∗(mx)) +

T∑
t=Ĉx/2+1

⟨x∗ − x (t), 1− emx ⟩


= max

x∗∈∆mx

 Ĉx

2
(1− x∗(mx)) +

T∑
t=Ĉx/2+1

(x (t)(mx)− x∗(mx))

 ≥ Ĉx

2
.
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Main result (2)-(iii):
Lower bound for the opponent’s strategy deviation

Our upper bound: RegTx,g ≲ min
{√

(log(mxmy ) + Cx + Cy ) logmx ,
√
T logmx

}
+Cx

If corruption occurs only in y -player’s strategies (i.e., Ĉx = C̃x = C̃y = 0),

RegTx̂ ,g = Õ
(√

Ĉy

)
, RegTŷ ,ℓ = Õ

(√
Ĉy

)
,

which matches the following lower bound:

Theorem (Lower bounds in the corrupted regime)

For any learning dynamics,

(iii) there exists a corrupted game with
∑T

t=1∥y (t) − ŷ (t)∥1 ≤ Ĉy such that

max
{
RegTx̂ ,g ,Reg

T
ŷ ,ℓ

}
= Ω

(√
Ĉy

)
;

(there exists a corrupted game with
∑T

t=1∥x(t) − x̂(t)∥1 ≤ Ĉx such that max
{
RegTx̂,g ,Reg

T
ŷ,ℓ

}
= Ω

(√
Ĉx

)
.)

Similar to the lower bounds of Syrgkanis et al. (2015) and Chen and Peng (2020), but
their bounds are for Hedge and are not for corrupted games
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max
{
RegTx̂ ,g ,Reg

T
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Main result (2)-(iii):
Lower bound for the opponent’s strategy deviation

Construct a corrupted game with
∑T

t=1∥y
(t) − ŷ (t)∥1 ≤ Ĉy such that max

{
RegTx̂,g ,Reg

T
ŷ,ℓ

}
= Ω

(√
Ĉy

)
.

Proof sketch. It suffices to prove

∃ absolute constκ > 0, RegTŷ ,ℓ < κ

√
Ĉy =⇒ RegTx̂ ,g ≥ κ

√
Ĉx .

Consider A =

(
1 0 −1
0 1 −1

)
optimal action of y -player

For t = 1, . . . , Ĉy/2, use the lower bound for online linear optimization over simplex:

maxx∈∆mx

∑Ĉy/2
t=1 ⟨x − x̂ (t), ǧ (t)⟩ ≥ 1

2

√
Ĉy . (choose y (t) such that ǧ (t) = Ay (t))

For t = Ĉy/2 + 1, . . . ,T , y -player can select actions 1 and 2 at most κ
√
Ĉy times.

x-player’s regret after round t = Ĉy/2 + 1 is lower bounded by −κ
√
Ĉy .

Choosing κ = 1/4 gives RegTx̂ ,g ≥
1
2

√
Ĉy − κ

√
Ĉy = κ

√
Ĉy .
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Outline
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Multi-player general-sum games

Zero-sum games: Players have exactly opposed interests
General-sum games: Players may have partially aligned interests

• n ≥ 2: the number of players

• Each player i ∈ [n] has an action set Ai with |Ai | = mi and
a utility function ui : A1 × · · · × An → [−1, 1]

1. Each player i ∈ [n] selects a strategy xi ∈ ∆mi ;

2. Each player i gains a reward of Ea1∼x1,...,an∼xn [ui (a1, . . . , an)].
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Example of general-sum games

Example 1. Lunch dilemma (known as battle of the sexes, Bach or Stravinsky)
Players 1 and 2 want to have lunch together,
but have a choice between two restaurants (Cake or Ramen) to go

u1 =

(
3 0
0 2

)utility functions

u2 =

(
2 0
0 3

)player 1

player 2

3, 2

0, 0

0, 0

2, 3

player 1

player 2

Nash eq: (pure) (Cake,Cake), (Ramen,Ramen),
(mixed) Cake with prob. 3/5 and Ramen with prob. 2/5 (for player 1)
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Example of general-sum games (cont’d)

Example 2. Game of chicken: two-player “STOP-or-GO” at intersection game

u1 =

(
0 0
1 −100

)utility functions

u2 =

(
0 1
0 −100

)player 1

player 2

0, 0 0, 1

−100,

STOP

GO

STOP GO

1, 0

STOP or GO?

STOP or GO?

−100

Nash eq: (pure) (STOP,GO), (GO,STOP),
(mixed) STOP with prob. 100/101 and GO with prob. 1/101

/ In the mixed strategy, both players compromise too much and get low payoffs.

/ (Believed that) Nash eq cannot be computed in polynomial time w.r.t. the action size
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Example of general-sum games (cont’d)
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Correlated equilibrium

Correlated equilibrium: A probability distribution over ×n
i=1Ai such that following the

“signal” is always the best, no matter how a player considers modifying their response.

Definition (Correlated equilibrium, Aumann 1974)

A probability distribution σ over action sets ×n
i=1Ai is an ε-approximate correlated

equilibrium if for any player i ∈ [n] and any (swap) function ϕi : Ai → Ai，
Ea∼σ[ui (a)] ≥ Ea∼σ[ui (ϕi (ai ), a−i )]− ε ,

where a−i = (a1, . . . , ai−1, ai+1, . . . an).

Examples of correlated equilibrium

• Lunch dilemma: flip a coin (observable to both Players 1 and 2); if heads, choose
(Cake, Cake), if tails, choose (Ramen, Ramen).

• Game of chicken: a traffic light that outputs (STOP, GO) or (GO, STOP) with
equal probability.
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Learning in multi-player general-sum games

• n ≥ 2: the number of players

• Each player i ∈ [n] has an action set Ai with |Ai | = mi and
a utility function ui : A1 × · · · × An → [−1, 1]

At each round t = 1, . . . ,T :

1. Each player i ∈ [n] selects a strategy x
(t)
i ∈ ∆mi ;

2. Each player i observes a utility vector u
(t)
i ∈ [−1, 1]mi , where

u
(t)
i (ai ) = E

a−i∼x
(t)
−i

[ui (ai , a−i )]. (recall Ay
(t) in zero-sum games);

3. Each player i gains a reward of ⟨x (t)i , u
(t)
i ⟩.
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The goal of each player i is to minimize the regret (w/o knowing utilities {ui}i∈[n]):

RegTxi ,ui = maxx∗∈∆mx

{∑T
t=1⟨x∗, u

(t)
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2. Each player i observes a utility vector u
(t)
i ∈ [−1, 1]mi , where

u
(t)
i (ai ) = E

a−i∼x
(t)
−i

[ui (ai , a−i )]. (recall Ay
(t) in zero-sum games);

3. Each player i gains a reward of ⟨x (t)i , u
(t)
i ⟩.

The goal of each player i is to minimize the swap regret (w/o knowing utilities {ui}i∈[n]):

SwapRegTxi ,ui = maxM∈Mmi

∑T
t=1⟨x

(t)
i ,Mu

(t)
i − u

(t)
i ⟩ ,

where Mm = {M ∈ [0, 1]m×m : M(k, ·) ∈ ∆m for k ∈ [m]}. “I should’ve played strategy M⊤x
(t)
i instead of x

(t)
i ...”
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No-swap-regret learning dynamics and correlated equilibrium

A probability distribution σ over action sets ×n
i=1Ai is an ε-approximate correlated

equilibrium if for any player i ∈ [n] and any (swap) function ϕi : Ai → Ai，
Ea∼σ[ui (a)] ≥ Ea∼σ[ui (ϕi (ai ), a−i )]− ε.

Theorem (Foster and Vohra 1997)

Let σ(t) = ⊗i∈[n]x
(t)
i ∈ ∆(×n

i=1Ai ) given by σ(t)(a1, . . . , an) =
∏

i∈[n] x
(t)
i (ai ) for each

ai ∈ Ai be the joint distribution at round t. Then, its time-averaged distribution
σ = 1

T

∑T
t=1 σ

(t) is a (maxi∈[n] SwapReg
T
xi ,ui

/T )-approximate correlated equilibrium.
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Corrupted regime in multi-player general-sum games

At each round t = 1, . . . ,T :

1. A prescribed algorithm suggests a strategy x̂
(t)
i ∈ ∆mi for each player i ∈ [n];

2. (corruption of strategies)

Each player i ∈ [n] selects a strategy x
(t)
i ← x̂

(t)
i + ĉ

(t)
i ;

3. (corruption of utilities)

Each player i observes a corrupted utility vector ũ
(t)
i ← u

(t)
i + c̃

(t)
i ;

4. Each player i gains a reward of
⟨x(t)i ,u

(t)
i ⟩

or ⟨x(t),ũ(t)i ⟩

• the corrupted regime with no corruptions = the honest regime

• the corrupted regime with arbitrary strategies by the opponent players j ̸= [n] \ {i}
= the adversarial scenario for player i
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Swap regret minimization to regret minimization

A well-known reduction due to Blum and Mansour (2007), informal:

1. Run mi external regret minimizers (one for each action) for each player i

(with utility vector ũ
(s)
i ,a = x̂

(s)
i (a)ũ

(s)
i (s < t) for a-th minimizer output x̂

(t)
i (a));

2. Define a Markov chain Q
(t)
i from the outputs y

(t)
i ,a ∈ ∆mi for each a ∈ Ai

(Use Q
(t)
i ∈ [0, 1]mi×mi whose a-th row is y

(t)
i ,a for each a ∈ Ai );

3. Use a stationary distribution of the Markov chain induced by Q
(t)
i as x̂

(t)
i .
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i (a)ũ
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(t)
i ,a ∈ ∆mi for each a ∈ Ai

(Use Q
(t)
i ∈ [0, 1]mi×mi whose a-th row is y

(t)
i ,a for each a ∈ Ai );

3. Use a stationary distribution of the Markov chain induced by Q
(t)
i as x̂

(t)
i .

The swap regret is the sum of the external regret of external regret minimizer a ∈ Ai .

Lemma (Blum and Mansour 2007)

Define ũ
(t)
i ,a = x̂

(t)
i (a)ũ

(t)
i and R̃eg

T

i ,a(y
∗) =

∑T
t=1⟨y∗ − y

(t)
i ,a , ũ

(t)
i ,a ⟩. Then,

SwapRegTx̂i ,ũi (M) =
∑
a∈Ai

R̃eg
T

i ,a(M(a, ·)) .
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Our algorithm: OFTRL with log-barrier and adaptive lr

Sufficient to construct a no-external-regret algorithm that aims to minimize the external

regret R̃eg
T

i ,a(M(a, ·)).

OFTRL with log-barrier ϕ(x) = −
∑

k log(x(k)) and adaptive learning rate:

compute y
(t)
i ,a ∈ ∆mi for each a ∈ Ai by

y
(t)
i ,a =argmax

y∈∆mi


〈
y , ũ

(t−1)
i ,a +

t−1∑
s=1

ũ
(s)
i ,a

〉
−ϕ(y)

η
(t)
i ,a

, η
(t)
i ,a =min


√√√√ mi logT/8

4+
∑t−1

s=1∥ũ
(s)
i ,a −ũ

(s−1)
i ,a ∥2∞

, η̄i

 ,

where ũ
(t)
i ,a = x̂

(t)
i (a)ũ

(t)
i and η̄i =

1
256n

√
mi
.

We use the expert-wise adaptive learning rate η
(t)
i ,a for each player i ∈ [n] and a ∈ Ai ,

while Anagnostides et al. (2022) uses a constant common learning rate, η
(t)
i ,a = ηi .
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Main result (3): Swap regret bound in the corrupted regime

Swap regret upper bounds of player i in multi-player general-sum games with n-players
and m-actions after T rounds
Ĉi ∈ [0, 2T ]: the cumulative amount of corruption in strategies for player i , Ŝ =

∑
i∈[n] Ĉi

References Honest Corrupted (if no corruption in observed utilities)

Chen and Peng (2020)
√
n(m logm)3/4T 1/4

√
mT logm + Ĉi

Anagnostides et al. (2022) nm5/2 logT nm5/2 logT +
√

mT logm + Ĉi
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{√

Ŝ(nm2+m5/2) logT ,m
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Compared to the best bounds by Anagnostides et al. (2022), our algorithm achieves

• the same bound in the honest regime

• a new adaptive bound in the corrupted regime in terms of Ŝ and S̃

• a worst-case bound that is
√
m-times worse than their bound of O(nm5/2 logT +

√
Tm logm).
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Compared to the best bounds by Anagnostides et al. (2022), our algorithm achieves

• the same bound in the honest regime

• a new adaptive bound in the corrupted regime in terms of Ŝ and S̃

• a worst-case bound that is
√
m-times worse than their bound of O(nm5/2 logT +

√
Tm logm).

Again, the bound in corrupted regime incentivizes players to follow the given algorithm.
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Key lemma: Stability of stationary distributions

Lemma (Stability of stationary distributions of Markov chains)

Recall that OFTRL update is given by

y
(t)
i ,a = argmax

y∈∆m

{
−F (t)

i ,a (y)
}
, F

(t)
i ,a (y) := −

〈y , ũ(t−1)
i ,a +

t−1∑
s=1

ũ
(s)
i ,a

〉
− 1

η
(t)
i ,a

ϕ(y)

 .

Then, the choice of the learning rate η
(t)
i ,a guarantees∑

a∈A
∥y (t+1)

a − y
(t)
a ∥y (t)

a ,F
(t+1)
a

=
1√

η
(t+1)
a

∑
a∈A
∥y (t+1)

a − y
(t)
a ∥y (t)

a ,ϕ
≤ 1

2
.

Recall that we define a Markov chain from y
(t)
i ,a ∈ ∆mi for each a ∈ Ai (Q

(t)
i ∈ [0, 1]mi×mi

whose a-th row is y
(t)
i ,a for each a ∈ Ai ) and use its stationary distribution as y

(t)
i ,a .
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Summary

Research questions

• Can we adapt to deviations of the opponent from a given algorithm?

• Can we characterize regret and convergence rates to an equilibrium in such a
corrupted game?

Our contributions

• Establish a framework of corrupted games, in which each player may deviate
from a prescribed algorithm

• Give a nearly complete characterization of learning dynamics in corrupted
games, by deriving regret upper and lower bounds in (normal-form) two-player
zero-sum and multi-player general-sum games:

Roughly, RegTx ,g = Θ̃(
√
Cy + Cx) , SwapRegTxi ,ui = Θ̃(

√∑
j ̸=i Cj + Ci ) .
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