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Two-player zero-sum games

Consider a two-player zero-sum game with a payoff matrix A € [—1, 1]™*™y
(my, my: the number of actions of x- and y-players)
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respectively.  (An = {x €[0,1]™: ||x|l1 = 1}: the (m — 1)-dimensional probability simplex)
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Two-player zero-sum games

Consider a two-player zero-sum game with a payoff matrix A € [—1, 1]™*™y
(my, my: the number of actions of x- and y-players)

1. x-player and y-player simultaneously choose strategies x € Ay, and y € Ay, ,
respectively.  (An = {x €[0,1]™: ||x|l1 = 1}: the (m — 1)-dimensional probability simplex)

2. x-player gains a (expected) payoff of x" Ay, and y-player incurs a loss of x' Ay
(thus zero-sum).

We say that a strategy x is pure if x = e; for some i € [my] = {1,..., my}.



Two-player zero-sum games

5/

Example 1. Rock-Paper-Scissors

y-player

@ &

W

& | 0,0 1,-1

x-player % ~1,1| 0,0 |1,-1

payoff matrix of the game
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Nash equilibrium: a pair of (possibly randomized) actions in which no player has an
incentive to deviate

Definition (Nash equilibrium)

A pair of probability distributions (x*, y*) over action sets [m,] and [m,] is an
g-approximate Nash equilibrium if

x Ay* —e < x*TAy* < x*TAy +e Vx€AQm,y€An,.
In the Rock-Paper-Scissors example, the pair x = (1/3,1/3,1/3),y =(1/3,1/3,1/3) is a
Nash equilibrium.

A Nash equilibrium can be computed by linear programming, but ...
® Can be computationally infeasible for large-scale payoff matrices
® Cannot be used when the payoff matrix is unknown

— solution: learning in games
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Learning in games

Learning in games

Multiple players interact in a shared environment,

each aiming to maximize their total rewards (= minimize their regret)
by iteratively adapting their strategies based on repeated interactions




. . 74
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Learning in games

Multiple players interact in a shared environment,

each aiming to maximize their total rewards (= minimize their regret)
by iteratively adapting their strategies based on repeated interactions

Broader applications

® Minimax optimization (e.g., min, max, xT Ay)

® Multi-agent reinforcement learning

® Superhuman Al for poker, human-level Al for Stratego
Alignment of LLMs
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Learning in two-player zero-sum games with an unknown payoff matrix A € [—1, 1]™*™My

(mx, my: the number of actions of x- and y-players)

At eachround t=1,...,T:
1. x-player selects a strategy x(t) € A, and y-player selects y() ¢ AV
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Learning in two-player zero-sum games with an unknown payoff matrix A € [—1, 1]™*™My

(mx, my: the number of actions of x- and y-players)

At eachround t=1,...,T:

1. x-player selects a strategy x(t) € A, and y-player selects y() ¢ AV

2. x-player observes a expected reward vector g(t)

= Ay() and

y-player observes a expected loss vector (1) = AT x(1);
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Learning in two-player zero-sum games with an unknown payoff matrix A € [—1, 1]™*™My

(mx, my: the number of actions of x- and y-players)

At eachround t=1,...,T:
1. x-player selects a strategy x(t) € A, and y-player selects y() ¢ AV

2. x-player observes a expected reward vector g(t) = Ay(t) and
y-player observes a expected loss vector (1) = AT x(1);

3. x-player gains a payoff of (x(t), Ay(t)) = (x(1) g(1)} and
y-player incurs a loss of (x(t), Ay(t)) = (y(1) ¢(t)); (thus zero-sum)

The goal of x-/y- players is to minimize the regret (without knowing A):

T e (g T e, gy
® Reg;:[ = maXy*eAmy {Zz—zl y(t),f(t)> _ Zt:l <y 7€(t)>}
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No-regret learning dynamics and Nash equilibrium 9

A pair of probability distributions (x*, y*) over action sets [m,] and [m,] is an
e-approximate Nash equilibrium if

xTAy  —e <x*TAy* <x*TAy+e Vx€Ap,yc A, .

Theorem (Freund and Schapire 1999)
Let X1 = % 2;1 x() and yr = % 2;1 y() be the average plays. Then its product
distribution (X1,yT) Is a ((RegXT’ P Reg; ¢0)/ T)-approximate Nash equilibrium.
— When the x- and y-players use standard online convex optimization algorithms,
we can guarantee O(1//T) convergence to a Nash eq! (w/ uncoupled dynamics)
e.g., Hedge algorithm guarantees Regzg = 5(ﬁ) and Reg;g = 5(ﬁ)

XO(i) o exp(ny 3121 85(1)) Vi € [my],  y(O(i) o exp(—ny 421 4s(1)) Vi € [my]

Q. Is this optimal rate in learning in games?
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Fast convergence in games

Hedge algorithm (recall g(t) = Ay(9) and ¢(t) = AT x(1)):

t—1
x0(i) oc exp (mZ&(O) viemd, y¥() o eXP< nyzﬁ (i > Vi € [m,]
s=1

Nxs Ny = l/f: learning rate
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Hedge algorithm (recall g(t) = Ay(9) and ¢(t) = AT x(1)):

t—1
x0(i) oc exp (mZ&(O) viemd, y¥() o eXP< nyzﬁ (i > Vi € [m,]
s=1

Nxs Ny = l/f: learning rate
Optimistic Hedge algorithm (A. Rakhlin and Sridharan 2013; S. Rakhlin and Sridharan
2013; Syrgkanis et al. 2015):

t—1
x(i OCeXP(Ux(ng + ge-( )) y(t)(i)O<exP(‘W(ZES(")‘F@—l(")))
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Optimistic Hedge algorithm (A. Rakhlin and Sridharan 2013; S. Rakhlin and Sridharan
2013; Syrgkanis et al. 2015):

t—1
xB) (i) o exp (nx (Z gs(f) + ge-1( )) Yy (i) o exp (—ny (Z s(i) +€t1(i)>)
s=1

Theorem (Syrgkanis et al. 2015)

If x- and y-players fully follow optimistic Hedge with constant learning rates 1),,n, ~ 1,
then Reg;r’g = 0(1) and Reg}ze = O(1), which implies an O(1/T) conv. rate to Nash.

Rough intuition: If the opponent uses a no-regret algorithm, then we can predict the
opponent’s next strategy y(*1) (and thus gradient g(t+1) = Ay(t+1)),
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Fast convergence in games

Optimistic Hedge algorithm (A. Rakhlin and Sridharan 2013; S. Rakhlin and Sridharan
2013; Syrgkanis et al. 2015):

t—1
xB) (i) o exp (nx (Z gs(f) + ge-1( )) Yy (i) o exp (—ny (Z s(i) +€t1(i)>)
s=1

Theorem (Syrgkanis et al. 2015)

If x- and y- players fully follow opt/m/st/c Hedge with constant learning rates nx,n, ~ 1,
then Regxg = O(1) and Regyg = O(1), which implies an O(1/T) conv. rate to Nash.

Q. What if the opponent does not follow optimistic Hedge with a constant learning rate?
Continuing with the algorithm may lead to a linear regret: Reg;— =Q(T).

— Solution (Syrgkanis et al. 2015): Monitor gradient variation ZE;}Hg(S) — g(”l)H%, and if
it exceeds a threshold, switch to an algorithm with a worst-case regret of 5(ﬁ)

(e.g., Hedge with learning rate of ©(1/V/T))
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Discontinuous behavior: A slight deviation of the y-player from a given algorithm can
suddenly cause the x-player to suffer a regret of O(v/T) ® ©

adversarial scenario
O(VT) y-player does not follow
: a given algorithm

honest regime

every player follows o) V'
a given algorithm - amount of deviation

0 by y-player
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Discontinuous behavior: A slight deviation of the y-player from a given algorithm can
suddenly cause the x-player to suffer a regret of O(vVT) @ ®

RegXT
adversarial scenario
oO(VT) y-player does not follow

a given algorithm

honest regime

every player follows ~ O(1) " :
a given algorithm : amount of deviation

0 by y-player

Research questions

® Can we adapt to deviations of the opponent from a given algorithm?

® Can we characterize regret and convergence rates to an equilibrium in such a
corrupted game?
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Research questions
e Can we adapt to deviations of the opponent from a given algorithm?
® Can we characterize regret and convergence rates to an equilibrium in such a
corrupted game?

Our contributions
® FEstablish a framework of corrupted games, in which each player may deviate
from a prescribed algorithm

® Give a nearly complete characterization of learning dynamics in corrupted
games, by deriving regret upper and lower bounds in (normal-form) two-player

zero-sum and multi-player general-sum games
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Corrupted regime in two-player zero-sum games

At eachround t=1,..., T:
1. A prescribed algorithm suggests strategies x(t) € A, and vy ¢ A,

2. (corruption of strategies)
&

x-player selects a strategy x(t) « x(t) 4 and

y-player selects y(t) + y(t) E)(,t);

Note: The corruption is allowed to depend arbitrarily on the past observations.
3. x-player observes a expected reward vector g(t) = Ay(t) and

y-player observes a expected loss vector (1) = AT x(t);

4. x-player gains a payoff of (x(t), g(1)) and y-player incurs a loss of (y(t), ¢(1))

Cumulative corruption of strategies: Cy = ZtT:lHEﬁt)Hl, (,A"y = ZtT:lH’cf,t)Hl
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We investigate a scenario where the observed utilities may also be corrupted.

Ateachround t=1,...,T:
1. A prescribed algorithm suggests strategies x(t) € A, and vy ¢ AV

2. x-player selects a strategy x(t) <« (1) 1+ &%) and
y-player selects y(t) « p(t) ’“)

3. (corruption of utilities)

y-player observes a corrupted loss vector /(t) = ¢(t) + Ef,t) for £(t) = AT x(1).

x-player observes a corrupted reward vector g(t) = g(t) + & for gt = Ay(t),
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Ateachround t=1,...,T:
1. A prescribed algorithm suggests strategies x(t) € A, and vy ¢ AV

2. x-player selects a strategy x(t) «— x(t) 4- ¢ e and

t
y-player selects y(t) « p(t) 4y ).

3. (corruption of utilities)
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We investigate a scenario where the observed utilities may also be corrupted.

At eachround t=1,..., T:
1. A prescribed algorithm suggests strategies x(!) € A, and vy ¢ A,

2. x-player selects a strategy x(t) « x(t) - ¢ A( ) and
y-player selects y(t) « y(t) 4yt);

3. (corruption of utilities)

y-player observes a corrupted loss vector £(t) = ¢(t) 4 & “{t) for ¢() = AT x(1).

<X( ),g( )> <y(t),g(t)>

or (x(® g0 and y-player incurs a loss of or (O 7))

4. x-player gains a payoff of

x-player observes a corrupted reward vector g(t) = g(t) 4 E{ ) for g = Ay,

Cumulative corruption of strategies and utilities:
s G=XL 1||df>||1, G =L 1H & ||oo, and G = G+ 2.
° Cy—Zt 1Hcy [F® Y_Zt 1|| Hoo'and G =G +26,.
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We investigate a scenario where the observed utilities may also be corrupted.

Ateachround t=1,...,T:
1. A prescribed algorithm suggests strategies x(t) € A, and vy ¢ AV
2. x-player selects a strategy x(t) «— x(t) 4- ¢ e and
y-player selects y(t) « p(t) 1 4;’,

3. (corruption of utilities)

x-player observes a corrupted reward vector g(t) = g(t) + & for gt = Ay(t),

y-player observes a corrupted Ioss vector (1) = ¢(t) 4 Ef,t) for £(t) = AT x(1).

(x(),g0) (y(®),e)
)

4. x-player gains a payoff of or (x (t) o) or (y(9 7))

and y-player incurs a loss of

® corrupted regime with no corruptions = the honest regime

® corrupted regime w/ 6;, = Q(T) = adversarial scenario for x-player



Our algorithm: Optimistic Hedge with adaptive learning rate™’*”

Syrgkanis et al. (2015): Optimistic Hedge with constant learning rate for the honest
regime
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Our algorithm: Optimistic Hedge with adaptive learning rate™’*”

Syrgkanis et al. (2015): Optimistic Hedge with constant learning rate for the honest
regime

() o<exp<77x<2gs +ge—1(i ))»ﬁle, Vi€ [my]

Ours: Optimistic Hedge with adaptive learning rate for the corrupted regime (not formally defined)

log_, (my)/2
(1) () + )((t) _ g4
(i) o<exp< (Zé’ g1 )) ! \/Iog+(mx)+Z§;iH§(S>—E‘S—”H%o

with log, (z) = max{log z,4}.

This is a very standard choice of learning rate (recall AdaGrad), but adjusted to satisfy

) <1/v2.



Main result (1): Regret upper bound in the corrupted regime®’*”

Cumulative corruption of strategies and utilities
e =718, CGo=311E") e, and G = G +2C..
* & =xLl8 M & = L1187, and ¢, =, +2G,.
Regret upper bounds of the x-player:

Honest regime Corrupted regime

Syrgkanis et al. (2015) log(mxm,) log(m,my) + /T log mx + C
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Cumulative corruption of strategies and utilities
e =718, CGo=311E") e, and G = G +2C..
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The bound Regxtg <4/ 6}/ + Cy in the corrupted regime ...

* smoothly interpolates between the O(1) regret in the honest regime and the O(v/T)
regret in the adversarial scenario (noting C, € [0,3T]).
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Cumulative corruption of strategies and utilities
e =718, CGo=311E") e, and G = G +2C..
* & =xLl8 M & = L1187, and ¢, =, +2G,.
Regret upper bounds of the x-player:

Honest regime Corrupted regime
Syrgkanis et al. (2015) log(mxm,) log(m,my) + /T log mx + C
Ours +/log(mxm,) log my min{\/(log(mxmy)—i— Cc+ C))log my, /T log mx}—i—CX

The bound Regxtg <4/ 6}/ + Cy in the corrupted regime ...

* smoothly interpolates between the O(1) regret in the honest regime and the O(v/T)

regret in the adversarial scenario (noting C, € [0,3T]).
® incentivizes players to follow the given algorithm:

> any deviation by an opponent incurs only a square-root penalty /G,
> whereas a deviation by a player from the given algorithm incurs a linear penalty Ci.
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Proof sketch of Reg), < 1/C, + C,

(omitting corruption of utilities, log and const factors)

Use the standard analysis of Optimistic Hedge:

T T
Reg;\—,g = MmaX {Z<X*a g(t)> - Z(S(\(t), g(t)>} (). suggested strategy

*EA
R t=1
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Proof sketch of Reg) < \/C, + G,

(omitting corruption of utilities, log and const factors)

Use the standard analysis of Optimistic Hedge:
-

!
1 _ ~
Regl, < o S n1g® — gV, - Z o IR )2
X t=1
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Proof sketch of Reg), < 1/C, + C,

(omitting corruption of utilities, log and const factors)

Use the standard analysis of Optimistic Hedge:
-

-
1 _ ~
Reg;T,g S W + Znﬁt)llg(” - g(t 1)||c2>o - Z 1 t) [[x (t+1) ?(t)H%
x t=1

t=1

T T
< J S lg® — gle=b )2, = 37RO — V|2 (def of 1) & 9l < 1/v2)
t=1 t=1
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Proof sketch of Regxg <4/G y T Cx

(omitting corruption of utilities, log and const factors)

Use the standard analysis of Optimistic Hedge:
-

-
1 _ ~
Reg;T,g S W + Znﬁt)llg(” - g(t 1)||c2>o - Z 1 t) [[x (t+1) ?(t)H%
x t=1

t=1

T T
< J S lg® — gle=b )2, = 37RO — V|2 (def of 1) & 9l < 1/v2)
t=1 t=1

The first term is evaluated as (recalling C, = S y® = 5@)

T T T
> lg!? =gt V5 = AW — yED)E < Z\Iy(” -y
t=1 t=1

T T
<4y Iy —7OIE+aY 170 -3VE S G +ZIIA“ -y
t=1 t=1

t=1
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Proof sketch of Reg/, < \/C, + C, (cont'd)

Previous slide:

Reg, < ng“ — g%, — ZHA“ = D)3,
T ~

D let - gt MR <6+ ZHV“) —yYIE.

t=1 t=1
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Proof sketch of Regxg <4/G y T C. (cont'd)

Previous slide:

T T
Regl, < 4| D llg® —glt=D]2 = > |zl — (=112
t=1 t=1

T T
Dolg® =g L S G+ oI -V
t=1 t=1

Combining these two and using |Reg£g — Reg£g| < C, give

Regxg < Regxg—i— Gy

T
< |G+ D10 - Bz - RO D4 G
t=1 t=1
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Proof sketch of RegXT’g S/ 6y + C, (cont'd)

Combining these two and using |Reg;’g — Reglgl < C, give

RegXT’g < Reg;zg + a(

T T
S \ G+ D Iy® =y = )= — %D+ G
t=1 t=1

Similarly, we have

T T
Reg), < \| G+ D[RO — xe=D[2 - 3750 — 5=D)2 4 C, .
t=1 t=1

Summing up these two inequalities gives ...



Proof sketch of Reg/, < \/C, + C, (cont'd)

19 /4

Summing up these two inequalities gives

-
Regxg + Regyz < J G, + ZHy y(t=1)|2 + J G + ZH)?(t) — x(t=1)2

t=1
T

= (I8 =RV 4+ 79— gIR) +

t=1

~

G+

~

Cy
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Proof sketch of Reg/, < \/C, + C, (cont'd)

Summing up these two inequalities gives

T
Reg/y + Regy, < J G+ ZH -y + J G+ D _IIRM —=e-1|2
t=1

)
—Z@* - DR 479 - DR) + 6+ G

~

(Cauchy-Schwarz) ,S 6)( + 6}/ + E:‘\x + Cy -

]~

1 - ~(t— N ~(t—
57 (IR0 ==} 4 79 — )3
t=1



Proof sketch of Regzg </ @ + C, (cont'd) o

Summing up these two inequalities gives

T T
Reg( g + Reg) S \| G+ Y 70 = D2 4+ | G+ ) |xO — x-1)|2
t=1 t=1

)
= (IR0 = REDR 4 79 - DR) + 6+ G
t=1

T
—~ —~ ~ ~ 1 N o =N o
(Cauchy—Schwarz) 5 C, + Cy + C + Cy — = (HX(t) — X(t 1)”% + ||y(t) — y(t DH%) .
t=1

Since Regxtg + Reg;g > 0 (from the definition of the Nash eq), ...



Proof sketch of Regzg </ @ + C, (cont'd) o

Since RegXTg + RegyTj > 0 (from the definition of the Nash eq),
T

SR =D 4+ 7O - D) S /G4 6+ G+ Gy

t=1
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Proof sketch of Regxg <4/G y T C. (cont'd)

Since RegXTg + Reg;é > 0 (from the definition of the Nash eq),

]
S (IR = REDE 40 - EDR) S/ G+ G+ G+ G

t=1

Recalling that Reglg is upper bouned as

Regl s 5 /Gy + 2470 — D)2 = SR — RV 1 &
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Proof sketch of Regxg <4/G y T C. (cont'd)

Since RegXTg + RegyTj > 0 (from the definition of the Nash eq),

]
S (IR = REDE 40 - EDR) S/ G+ G+ G+ G

t=1

Recalling that Reglg is upper bouned as

Reg! s S /G + L4700 — 7 D2 = ST IR0 D2 1 &

we obtain
R%%NJJ@+@+@+@+@5¢@+@,

as desired.
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Proof sketch of Regxg <4/G y T C. (cont'd)

Since RegXTg + RegyTj > 0 (from the definition of the Nash eq),

]
SR =D 4+ 7O - D) S /G4 6+ G+ Gy
t=1

Recalling that Reg;g is upper bouned as

Regl s S /G, + S, [I900) — DI — ST IR - R |2 4 &,

we obtain

~ ~

RengN\/ G+ G +G+G+ G <SG+ G,

as desired.

Deriving the regret upper bounds for two-player zero-sum games is straightforward!
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Lower bounds

Learning in corrupted multi-player general-sum games

Conclusion and discussion



Main result (2)-(i): Lower bound in terms of C, and C, 2w

Defining the regret Reg = w.r.t. the corrupted gradients g1,...,g7, we can show the
following upper bound (omltted in the theorem above):

~

Regxg < mln{\/(log(mxmy) + Cc+ C))log my,\/ T log mx}—l—CX.
= 0),

O

If corruption occurs only in x-player’s observed utilities (i.e., Cx = C, =

Regx~ = 0(y/ Cy log my),

which matches the following lower bound:



Main result (2)-(i): Lower bound in terms of C, and C, 2

Defining the regret Reg = w.r.t. the corrupted gradients g1,...,g7, we can show the
following upper bound (omltted in the theorem above):

~

Regxg < mln{\/(log(mxmy) + Cc+ C))log my,\/ T log mx}—l—CX.
= 0),

O

If corruption occurs only in x-player’s observed utilities (i.e., Cx = C, =

Regx~ = 0(y/ Cy log my),

which matches the following lower bound:

Theorem (Lower bounds in the corrupted regime)

For any learning dynamics,
(i) there exists a corrupted game with 2] ||lg® — 89|, < Cs such that
Regxg = RegA~ = Q(\/ Cy log mx),'

(there exists a corrupted game with ZZ—ZI 16 — 29| o < Ey such that Reg RegA ~=Q(V Cy log my).)



Main result (2)-(i): Lower bound in terms of C, and C, 22

Construct a corrupted game with ZZ—:IHg(t) -89 < Cx such that Regzg = Reg;g =Q(V Cx log my).

Idea. Let A =0 and use the following lower bound for online linear optimization over

simplex:
To

vAlg, 3gM, ... g(T) €]0,1]™, max Z<X* —x® g0y = Q(\/To log my) .

X*EAm, t—1



Main result (2)-(i): Lower bound in terms of C, and C, 22

Construct a corrupted game with ZZ—:IHg(t) -89 < Cx such that Regzg = Reg;g =Q(V Cx log my).

Idea. Let A =0 and use the following lower bound for online linear optimization over
simplex:
To

vAlg, 3gM ... g7 e [0, 1]™, max > (xr = X0 g1y = (/Tolog my).
x*e my
t=1
Proof. Forroundst=1,..., @/2, the expected reward vectors g(t) are corrupted so that

Zf;/ng(t) —2®|| < Cy, and no corruption occurs beyond this. Then, since A =0,

T C/2 T
T _ * ~ _ * ~ *
Regig = max > (<" —x1,g0)= max 03 (=x g0+ B (x—x, Ayl
t=1 t=1 t=Cy/2+1
Ce/2
— * _ L) =My > of4/C
X*rgaK;X Z(x x\H gty > Q( Cylog mX> . O

t=1
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Main result (2)-(ii):
Lower bound for the player’s own strategy deviation

Regret caused by the player's own deviation from the suggested strategies x(t), (t)

Reg;—,g < min{\/(log(mxmy) + G+ C))log my, /T log mx}+CX

If corruption occurs only in x-player’s strategies (i.e., (_A'y =C=C,=0),
Reg;g = 0(Cy),

which matches the following lower bound:
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Main result (2)-(ii):
Lower bound for the player’s own strategy deviation

Regret caused by the player's own deviation from the suggested strategies x(t), (t)

Reg)z-’g < min{\/(log(mxmy) + G+ C))log my, /T log mx}+CX

If corruption occurs only in x-player’s strategies (i.e., @ =G =C(,=0),
Reg;:g = 0(Cy),

which matches the following lower bound:

Theorem (Lower bounds in the corrupted regime)

For any learning dynamics,
(ii) there exists a corrupted game with ] ||x() — X(0)||y < C, such that
T T -
Reg,, = Reg, z = Q(&); .
(there exists a corrupted game with Z;r:lﬂy(t) — 901 < C, such that Reg;[ = Reg;—z =Q(G).)



Main result (2)-(ii): 24 /2
Lower bound for the player’s own strategy deviation

Construct a corrupted game with 37 [|x(® — (||, < C. such that Reg), = Reg/ . = Q(C.).
Idea. Construct a payoff matrix with an action with a low reward, and then design
corrupted strategies that select the action. In particular, consider

11 -1

A— and x(®) — 4 e, t=1...,C/2
(0 t=C/2+1,....T

11



Main result (2)-(ii):
Lower bound for the player’s own strategy deviation

24 /a2

Construct a corrupted game with 37 [|x(® — (||, < C. such that Reg), = Reg/ . = Q(C.).

Idea. Construct a payoff matrix with an action with a low reward, and then design

corrupted strategies that select the action. In particular, consider
11 .- 1

o(t) 4 1) _ _ ~
A= and x() = A+ 85 = em, t_lA"”’CX/z

11 x(1) t=0CJ/2+1,...,T
00 --- 0

Proof. For each t =1,..., C/2, we also have Ay(Y) =1 — e, and (x(, Ay()) =0

since AT x(t) = 0.



Hence, for any x* € A,

Ce/2 Ce/2 Ce/2

Ce \
D =xD gy =3 T AyD) = (T - ) = (1= x(my), (1)
t=1 t=1 t=1
where we used (x(1), Ay(t)) =0, Ay() =1 — ¢, , and x* € A, . Therefore,
T
Reg;g = max Z(x* — x(8) g(®)y
™ =1

~

2 T

t=Cy/2+1

X

= max
X*EAm, 1

..F
I

X*eAm ~
) t=Cy/2+1

6 T
(by (1)) = max {;ax*(mxw > <x*x<t),1emx>}



Main result (2)-(iii):
Lower bound for the opponent’s strategy deviation

26 /42

Our upper bound: Reng,g < min{\/(log(mxmy) + Cx + Cy) log my, /T log mx}+CX

If corruption occurs only in y-player's strategies (i.e., Ce=Cy = 6y =0),

Reg£g:5(\/?y), Reg}{Z:O( Cy),

which matches the following lower bound:
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Main result (2)-(iii):
Lower bound for the opponent’s strategy deviation

Our upper bound: Regxg < m|n{\/(log (mxmy) + Cx + Cy) log mx, \/Tlog mx}+Cx

If corruption occurs only in y-player's strategies (i.e., Ce=Cy = y =0),

Reg£g:O(\/?y), Reg}{(:a( (_A"y),

which matches the following lower bound:

Theorem (Lower bounds in the corrupted regime
p g
For any learning dynamics,
(iii) there exists a corrupted game with ] ||ly() — (®)||; < C, such that
T T -
max{Regzg7 Regy,z} = Q( Cy),
(there exists a corrupted game with [ ||x(V) —x(0)||; < C such that max{Reg;:g7 Reg;g} =Q(V&).)

Similar to the lower bounds of Syrgkanis et al. (2015) and Chen and Peng (2020), but
their bounds are for Hedge and are not for corrupted games
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Main result (2)-(iii):
Lower bound for the opponent’s strategy deviation

Construct a corrupted game with 327 [|y® — 7@, < C, such that max{Reg] ., Reg/,} = Q(V G).
Proof sketch. It suffices to prove

Jabsolute const k > 0, Reg};g < K4/ 6y == Reg;—g > ky/ Cx.

. 10 -1
Consider A = < 01 -1 ) optimal action of y-player
Fort=1,..., 6y/2, use the lower bound for online linear optimization over simplex:

MaXye A, tci/12<x — x50y > 31/ (_A'y. (choose y(t) such that (1) = Ay(t))

For t = @/2 4+ 1,..., T, y-player can select actions 1 and 2 at most KV fy times.
x-player's regret after round t = @/2 + 1 is lower bounded by —k+/ 6y.

Choosing k = 1/4 gives Reg;,g > %\/ 6}/ — K4/ 6}/ = K4/ (/:\y. O]
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® |ntroduction
» Two-player zero-sum games, Nash equilibrium
» Nash equilibrium and no-regret dynamics
» Fast convergence in games
» Research questions

® | earning in corrupted two-player zero-sum games

Lower bounds

Learning in corrupted multi-player general-sum games

Conclusion and discussion
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Multi-player general-sum games e

Zero-sum games: Players have exactly opposed interests
General-sum games: Players may have partially aligned interests



Multi-player general-sum games

29 /42

Zero-sum games: Players have exactly opposed interests
General-sum games: Players may have partially aligned interests

® n > 2: the number of players
® Each player i € [n] has an action set A; with |A;| = m; and
a utility function uj: Ay x -+ x A, — [-1,1]
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Zero-sum games: Players have exactly opposed interests
General-sum games: Players may have partially aligned interests

® n > 2: the number of players
® Each player i € [n] has an action set A; with |A;| = m; and
a utility function uj: Ay x -+ x A, — [-1,1]

1. Each player i € [n] selects a strategy x; € Apy;




Multi-player general-sum games

29 /42

Zero-sum games: Players have exactly opposed interests
General-sum games: Players may have partially aligned interests

® n > 2: the number of players
® Each player i € [n] has an action set A; with |A;| = m; and
a utility function uj: Ay x -+ x A, — [-1,1]

1. Each player i € [n] selects a strategy x; € Apy;

2. Each player i gains a reward of E, s an~xo[Ui(a1, ..., an)]-
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Example of general-sum games

Example 1. Lunch dilemma (known as battle of the sexes, Bach or Stravinsky)
Players 1 and 2 want to have lunch together,
but have a choice between two restaurants (Cake or Ramen) to go
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Example of general-sum games

Example 1. Lunch dilemma (known as battle of the sexes, Bach or Stravinsky)
Players 1 and 2 want to have lunch together,
but have a choice between two restaurants (Cake or Ramen) to go

player 2 8
utility functions
player 1 g —> % % @
oy " (3 0)
I player 1 % 3,2 |1 0,0 0 2

\le> g @ | 0,0 | 23 U2=(§ 2)




Example of general-sum games

3042

Example 1. Lunch dilemma (known as battle of the sexes, Bach or Stravinsky)

Players 1 and 2 want to have lunch together,

but have a choice between two restaurants (Cake or Ramen) to go

player 2 g

player 1 g % % %

®

I player 1 &3 | 3,2

0,0

Sy A
player 2 8——>

2,3

® | o0
Nash eq: (pure) (Cake,Cake), (Ramen,Ramen),

b~ 3
1= \o
(2
uy = 0

utility functions

2
9

(mixed) Cake with prob. 3/5 and Ramen with prob. 2/5 (for player 1)



Example of general-sum games (cont’d) 31/

Example 2. Game of chicken: two-player “STOP-or-GO" at intersection game



Example of general-sum games (cont’d) 31/

Example 2. Game of chicken: two-player “STOP-or-GO" at intersection game

player 2 @R
STOP or GO? SToP GO utility functions
¢
STOP or GO? (0 0
% player 1 STOP 0,0 0,1 =11 100

'oﬁcﬂ O 1

—100, —

6o | 1,0 1 (o —100)
—100




Example of general-sum games (cont’d) 31/

Example 2. Game of chicken: two-player “STOP-or-GO" at intersection game

player 2 R
STOP or GO? STOP GO utility functions
¢

STOP or GO? (0 0

% player 1 STOP 0,0 0,1 =11 —100
S

100, P

o | 1,0 0 —100
—100

Nash eq: (pure) (STOP,GO), (GO,STOP),
(mixed) STOP with prob. 100/101 and GO with prob. 1/101



Example of general-sum games (cont’d) 31/

Example 2. Game of chicken: two-player “STOP-or-GO" at intersection game

player 2 R
STOP or GO? STOP GO utility functions
¢

STOP or GO? (0 0

% player 1 STOP 0,0 0,1 =1 —100
S

100, m= (2 !

o | 1,0 0 —100
—100

Nash eq: (pure) (STOP,GO), (GO,STOP),
(mixed) STOP with prob. 100/101 and GO with prob. 1/101

® In the mixed strategy, both players compromise too much and get low payoffs.

© (Believed that) Nash eq cannot be computed in polynomial time w.r.t. the action size
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Correlated equilibrium e

Correlated equilibrium: A probability distribution over x?_; A; such that following the
“signal” is always the best, no matter how a player considers modifying their response.
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Correlated equilibrium e

Correlated equilibrium: A probability distribution over x?_; A; such that following the
“signal” is always the best, no matter how a player considers modifying their response.

Definition (Correlated equilibrium, Aumann 1974)

A probability distribution o over action sets x[_;.A4; is an e-approximate correlated
equilibrium if for any player i € [n] and any (swap) function ¢;: A; — A;,

Eano[ui(a)] 2 Eanolui(@i(ai), a—i)] — ¢,

where a_; = (a1,...,ai—1, @i+1,-- - an).
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Correlated equilibrium e

Correlated equilibrium: A probability distribution over x?_; A; such that following the
“signal” is always the best, no matter how a player considers modifying their response.

Definition (Correlated equilibrium, Aumann 1974)

A probability distribution o over action sets x[_;.A4; is an e-approximate correlated

equilibrium if for any player i € [n] and any (swap) function ¢;: A; — A;,
Eanolui(a)] = Eanolui(9i(ai), a-i)] — €,

where a_; = (a1,...,8j-1,3i+1,---an)-

Examples of correlated equilibrium
® Lunch dilemma: flip a coin (observable to both Players 1 and 2); if heads, choose
(Cake, Cake), if tails, choose (Ramen, Ramen).

® Game of chicken: a traffic light that outputs (STOP, GO) or (GO, STOP) with
equal probability.
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Learning in multi-player general-sum games

® n > 2: the number of players

e Each player i € [n] has an action set A; with |4;] = m; and
a utility function uj: Ay X -+ x Ap — [—1,1]

At eachround t=1,...,T:
1. Each player i € [n] selects a strategy X\t ¢ A

1
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Learning in multi-player general-sum games

® n > 2: the number of players

e Each player i € [n] has an action set A; with |4;] = m; and
a utility function uj: Ay X -+ x Ap — [—1,1]

At eachround t=1,...,T:
1. Each player i € [n] selects a strategy X\t ¢ A

1
2. Each player i observes a utility vector u,(t) € [-1,1]™, where

uft)(a,-) = Ea_iNX(_t)[u,-(a,-, a_j)]. (recall Ay() in zero-sum games);
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Learning in multi-player general-sum games

® n > 2: the number of players

e Each player i € [n] has an action set A; with |4;] = m; and
a utility function uj: Ay X -+ x Ap — [—1,1]

At eachround t=1,...,T:
1. Each player i € [n] selects a strategy XI-(t) S
2. Each player i observes a utility vector u,(t) € [-1,1]™, where

uft)(a,-) = Ea_iNX(_t)[u,-(a,-, a_j)]. (recall Ay() in zero-sum games);

3. Each player i gains a reward of <x(t), uft)>.

i
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Learning in multi-player general-sum games

® n > 2: the number of players

e Each player i € [n] has an action set A; with |4;] = m; and
a utility function u;j: Ay X -+ X Ap — [-1,1]

At eachround t=1,..., T:
1. Each player i € [n] selects a strategy X(t) SN
2. Each player i observes a utility vector u ) e [—1,1]™, where

(t)(a,) =E, _ olui(ai,a-)]. (recall Ay(t) in zero-sum games);

(),

3. Each player i gains a reward of (x;

The goal of each player i is to minimize the regret (w/o knowing utilities {u;};c[n]):

Reg;’;ui = maXX*GAmX{ZZ—:1<X*, u(t > Zt— < ) ,(t)>}
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Learning in multi-player general-sum games

® n > 2: the number of players

e Each player i € [n] has an action set A; with |A4;] = m; and
a utility function uj: Ay X -+ x Ap — [—1,1]

At eachround t=1,...,T:
1. Each player i € [n] selects a strategy x(t) € Ap;;
2. Each player i observes a utility vector u ) e [—1,1]™, where
(t)(a,) = Eaiiwx(t?[u;(a;, a_;)]. (recall Ay(t) in zero-sum games);

{ I.(t), uft)).

3. Each player i gains a reward of (x

The goal of each player i is to minimize the swap regret (w/o knowing utilities {u;};c[n):

SwapRegX u = MaXpeM,, Zt L(x (t) Mu(t) (t)>

)

where Mm= {M € [0, 1]m><m. M(k, ) [SAYS for k S [m]} “| should've played strategy MTx( ) instead m‘x< ) -
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No-swap-regret learning dynamics and correlated equilibrium ™’ *

A probability distribution o over action sets x?_;.A; is an e-approximate correlated
equilibrium if for any player i € [n] and any (swap) function ¢;: A; — Aj,

Eano[ui(a)] > Eano[ui(9i(ai), a-i)] — €.

Theorem (Foster and Vohra 1997)

Let o) = ®,~e[,,]xi(t) € A(x"_,A;) given by 0(O(ay, ... a,) = [Ticn xi(t)(a,-) for each
a; € A; be the joint distribution at round t. Then, its time-averaged distribution
o= % Z;l o) s a (maxie[n) SwapRegLUI/T)—approximate correlated equilibrium.



Corrupted regime in multi-player general-sum games

35 /42

At eachround t=1,..., T:

1. A prescribed algorithm suggests a strategy 2 ¢ Ap, for each player i € [n];

2. (corruption of strategies)

Each player i € [n] selects a strategy x,.(t) — >?,-(t) + 5,“);
3. (corruption of utilities)

Each player i observes a corrupted utility vector Z/ft) — uft) + ¢,

i
<X(f) u(t)>

i 0T

4. Each player i gains a reward of o (19,519




Corrupted regime in multi-player general-sum games

35 /42

At eachround t=1,..., T:

1. A prescribed algorithm suggests a strategy 2 ¢ Ap, for each player i € [n];

!
2. (corruption of strategies)

Each player i € [n] selects a strategy x,-(t) — >?,.(t) + Eft);

3. (corruption of utilities)
Each player i observes a corrupted utility vector Zét) +— uft) + Eft);
<X(f) u(t)>

i 0T

4. Each player i gains a reward of o (19,519

® the corrupted regime with no corruptions = the honest regime

® the corrupted regime with arbitrary strategies by the opponent players j # [n] \ {i}

= the adversarial scenario for player i



PR c e e . 36
Swap regret minimization to regret minimization e

A well-known reduction due to Blum and Mansour (2007), informal:
1. Run m; external regret minimizers (one for each action) for each player i
(with utility vector Dﬁ) = ?i(s)(a)ﬁfs) (s < t) for a-th minimizer output >’?,-(t)(a));



PR c e e . 36
Swap regret minimization to regret minimization e

A well-known reduction due to Blum and Mansour (2007), informal:
1. Run m; external regret minimizers (one for each action) for each player i
(with utility vector Dﬁ) = ?i(s)(a)ﬁfs) (s < t) for a-th minimizer output >’?,-(t)(a));
2. Define a Markov chain Qi(t) from the outputs yi(’g) € A, for each a € A;
(Use Q,-(t) € [0, 1) *™i whose a-th row is y,-(;) for each a € A4));



Swap regret minimization to regret minimization

3642

A well-known reduction due to Blum and Mansour (2007), informal:

1.

Run m; external regret minimizers (one for each action) for each player i

(with utility vector Dﬁ) = ?,-(s)(a)ﬁfs) (s < t) for a-th minimizer output >’?,-(t)(a));

Define a Markov chain Qi(t) from the outputs yi(’g) € A, for each a € A;
(Use Q,-(t) € [0, 1) *™i whose a-th row is y,-(;) for each a € A4));

Use a stationary distribution of the Markov chain induced by QI.(t) as )?l.(t).
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Swap regret minimization to regret minimization e

A well-known reduction due to Blum and Mansour (2007), informal:
1. Run m; external regret minimizers (one for each action) for each player i
~(s) _ o(s)( y(s)
ia = X (a)u; ™ (

with utility vector u s < t) for a-th minimizer output 20(a ;
y i

2. Define a Markov chain Q,.(t) from the outputs y,-(;) € Ap, for each a € A;
(Use Q,-(t) € [0, 1]™m>*™mi whose a-th row is y,-(v? for each a € A;);
3. Use a stationary distribution of the Markov chain induced by Qi(t) as 28,

]

The swap regret is the sum of the external regret of external regret minimizer a € A;.

Lemma (Blum and Mansour 2007)

Define 5") = 2 (a)i") and Reg; ,(v*) = =1 (v — y2, &), Then,

SwapRegl (M) = 3 Reg; ,(M(a.)).
acA;



Our algorithm: OFTRL with log-barrier and adaptive Ir e

Sufficient to construct a no-external-regret algorithm that aims to minimize the external
T
regret Reg; ,(M(a,)).



Our algorithm: OFTRL with log-barrier and adaptive Ir e

Sufficient to construct a no-external-regret algorithm that aims to minimize the external
— T

regret Reg; ,(M(a,)).

OFTRL with log-barrier ¢(x) = — >, log(x(k)) and adaptive learning rate:

compute y,(t;) € Ay, for each a € A; by

/O argmaxd { y. a&D +§~(S) P(y) O = min m;log T/8 i
T e [\ ARCH i 4y -l VR

where Bf? = >/<\,-(t)(a)ﬂ§t) and 7jj = ﬁ\/ﬁ'



Our algorithm: OFTRL with log-barrier and adaptive Ir e

Sufficient to construct a no-external-regret algorithm that aims to minimize the external
— T

regret Reg; ,(M(a,)).

OFTRL with log-barrier ¢(x) = — >, log(x(k)) and adaptive learning rate:

compute y,(t;) € Ay, for each a € A; by

t—1
oy . mjlog T/8
y/(a)_argmax <y7 N,(z, 1)+ u%j:)>_ ((t)) 777,(2_ min —1 /~(s D2 yMi g s
yeAm s=1 Tlf’a 4+Zs:1Hu/ H
1) _ () (D) = _ 1
where u; ;= ;"(a)u;” and 7 = 356/

We use the expert-wise adaptive learning rate 77,(? for each player i € [n] and a € A;,

(t)

while Anagnostides et al. (2022) uses a constant common learning rate, 1; ) = 7;.



Main result (3): Swap regret bound in the corrupted regime **'*

Swap regret upper bounds of player i in multi-player general-sum games with n-players

and m-actions after T rounds
G e [0,2T]: the cumulative amount of corruption in strategies for player i, 5= Z,-E[n] G

Corrupted (if no corruption in observed utilities)

References Honest

Chen and Peng (2020) Va(mlog m)*4TY*  \/mTlogm + G
Anagnostides et al. (2022) nm®/?log T nm®?log T + \/mT logm + G
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Swap regret upper bounds of player i in multi-player general-sum games with n-players
and m-actions after T rounds
C; € [0,2T]: the cumulative amount of corruption in strategies for player i, S = > ic(n] G
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Compared to the best bounds by Anagnostides et al. (2022), our algorithm achieves

® the same bound in the honest regime
® a new adaptive bound in the corrupted regime in terms of Sand S

* a worst-case bound that is \/m-times worse than their bound of O(nm®/?log T + /Tmlog m).



Main result (3): Swap regret bound in the corrupted regime **'*

Swap regret upper bounds of player i in multi-player general-sum games with n-players
and m-actions after T rounds
C; € [0,2T]: the cumulative amount of corruption in strategies for player i, S = > ic(n] G

References Honest Corrupted (if no corruption in observed utilities)
Chen and Peng (2020) Va(mlogm)¥*TY*  \/mTlogm + G
Anagnostides et al. (2022) nm*log T nm®?log T+ /mT logm +

Ours nm®?log T nm®/? log T+min{\/ S(nm2+m5/2)log T , my/T Tog T}+a

Compared to the best bounds by Anagnostides et al. (2022), our algorithm achieves

® the same bound in the honest regime
® a new adaptive bound in the corrupted regime in terms of Sand S

* a worst-case bound that is \/m-times worse than their bound of O(nm®/?log T + /Tmlog m).

Again, the bound in corrupted regime incentivizes players to follow the given algorithm.



Key lemma: Stability of stationary distributions 9

Lemma (Stability of stationary distributions of Markov chains)

Recall that OF TRL update is given by

t—1
_ s 1
y,(a) = arg max{ F,-(,?(y)}, Fi(,ta)(}’) == <}/7 ‘A’ﬁ Y + E :Z’fa)> NG #(y)
’]7.

YEAR

Then, the choice of the learning rate 77,("3 guarantees

1) 1 1
S =y o prern = FE:H s =y e, <5
773 acA

acA

Recall that we define a Markov chain from y,-(;) € A, foreach a € A; (Q,-(t) € [0, 1)mixmi
(1)

whose a-th row is y,.(? for each a € A;) and use its stationary distribution as y;
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Summary e

Research questions

® Can we adapt to deviations of the opponent from a given algorithm?

e Can we characterize regret and convergence rates to an equilibrium in such a
corrupted game?

Our contributions
® Establish a framework of corrupted games, in which each player may deviate
from a prescribed algorithm

® Give a nearly complete characterization of learning dynamics in corrupted
games, by deriving regret upper and lower bounds in (normal-form) two-player

zero-sum and multi-player general-sum games:

Roughly, RegXT,g = é(\/Cy + G, SwapRegXThu’, = 9( > i G+ G).
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