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Learning in two-player zero-sum normal-form games

Learning in two-player zero-sum games with an unknown payoff matrix A ∈ [−1, 1]mx×my

(mx , my : the number of actions of x- and y -players)

At each round t = 1, . . . ,T : (∆m = {x ∈ [0, 1]m : ∥x∥1 = 1}: the (m − 1)-dimensional probability simplex)

1. x-player selects a strategy x (t) ∈ ∆mx and y -player selects y (t) ∈ ∆my ;

2. x-player observes a expected reward vector g (t) = Ay (t) and
y -player observes a expected loss vector ℓ(t) = A⊤x (t);

3. x-player gains a payoff of ⟨x (t),Ay (t)⟩ = ⟨x (t), g (t)⟩ and
y -player incurs a loss of ⟨x (t),Ay (t)⟩ = ⟨y (t), ℓ(t)⟩; (thus zero-sum)
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y -player observes a expected loss vector ℓ(t) = A⊤x (t);

3. x-player gains a payoff of ⟨x (t),Ay (t)⟩ = ⟨x (t), g (t)⟩ and
y -player incurs a loss of ⟨x (t),Ay (t)⟩ = ⟨y (t), ℓ(t)⟩; (thus zero-sum)

The goal of x-/y - players is to minimize the regret (without knowing A):

• RegTx ,g = maxx∗∈∆mx

{∑T
t=1⟨x∗, g (t)⟩ −

∑T
t=1⟨x (t), g (t)⟩

}
,

• RegTy ,ℓ = maxy∗∈∆my

{∑T
t=1⟨y (t), ℓ(t)⟩ −

∑T
t=1⟨y∗, ℓ(t)⟩

}
.
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No-regret learning dynamics and Nash equilibrium

Theorem (Freund and Schapire 1999)

Let x̄T = 1
T

∑T
t=1 x

(t) and ȳT = 1
T

∑T
t=1 y

(t) be the average plays. Then its product

distribution (x̄T , ȳT ) is a ((RegTx ,g + RegTy ,ℓ)/T )-approximate Nash equilibrium.

When the x- and y -players use standard online convex optimization algorithms with
O(
√
T ) regret, we can guarantee O(1/

√
T ) convergence to a Nash eq! (with uncoupled

dynamics)

Q. Is this optimal rate in learning in games?
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Fast convergence in games

Optimistic Hedge algorithm (A. Rakhlin and Sridharan 2013; S. Rakhlin and Sridharan
2013; Syrgkanis et al. 2015):

x (t)(i) ∝ exp

(
ηx

(
t−1∑
s=1

gs(i) + gt−1(i)

))
, y (t)(i) ∝ exp

(
−ηy

(
t−1∑
s=1

ℓs(i) + ℓt−1(i)

))
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If x- and y-players fully follow optimistic Hedge with constant learning rates ηx , ηy ≃ 1,

then RegTx ,g = Õ(1) and RegTy ,ℓ = Õ(1), which implies an Õ(1/T ) conv. rate to Nash.
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If x- and y-players fully follow optimistic Hedge with constant learning rates ηx , ηy ≃ 1,

then RegTx ,g = Õ(1) and RegTy ,ℓ = Õ(1), which implies an Õ(1/T ) conv. rate to Nash.

Q. What if the opponent does not follow optimistic Hedge with a constant learning rate?
Continuing with optimistic Hedge with constant lr may lead to a linear regret
→ Solution (Syrgkanis et al. 2015): Monitor gradient variation

∑t−1
s=1∥g (s) − g (s+1)∥21, and if

it exceeds a threshold, switch to an algorithm with a worst-case regret of Õ(
√
T )
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Research questions

Discontinuous behavior: A slight deviation of the y -player from a given algorithm can
suddenly cause the x-player to suffer a regret of O(

√
T ) / /

honest regime
every player follows
a given algorithm

adversarial scenario
y -player does not follow
a given algorithm

RegTx

amount of deviation
by y -player

Õ(1)

Õ(
√
T )

0
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Research questions

• Can we adapt to deviations of the opponent from a given algorithm?

• Can we characterize regret and convergence rates to an equilibrium in such a
corrupted game?
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Research questions

Research questions

• Can we adapt to deviations of the opponent from a given algorithm?

• Can we characterize regret and convergence rates to an equilibrium in such a
corrupted game?

Our contributions

• Establish a framework of corrupted games, in which each player may deviate
from a prescribed algorithm

• Derive regret upper and lower bounds in two-player zero-sum and
multiplayer general-sum games
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Corrupted regime in two-player zero-sum games

At each round t = 1, . . . ,T :

1. A prescribed algorithm suggests strategies x̂ (t) ∈ ∆mx and ŷ (t) ∈ ∆my ;

2. (corruption of strategies)

x-player selects a strategy x (t) ← x̂ (t) + ĉ
(t)
x and

y -player selects y (t) ← ŷ (t) + ĉ
(t)
y ;

Note: The corruption is allowed to depend arbitrarily on the past observations.

3. x-player observes a expected reward vector g (t) = Ay (t) and
y -player observes a expected loss vector ℓ(t) = A⊤x (t);

4. x-player gains a payoff of ⟨x (t), g (t)⟩ and y -player incurs a loss of ⟨y (t), ℓ(t)⟩
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4. x-player gains a payoff of ⟨x (t), g (t)⟩ and y -player incurs a loss of ⟨y (t), ℓ(t)⟩

Cumulative corruption of strategies: Ĉx =
∑T

t=1∥ĉ
(t)
x ∥1, Ĉy =

∑T
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Corrupted regime in two-player zero-sum games

We investigate a scenario where the observed utilities may also be corrupted.

At each round t = 1, . . . ,T :
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y ;

3. (corruption of utilities)

x-player observes a corrupted reward vector g̃ (t) = g (t) + c̃
(t)
x for g (t) = Ay (t),

y -player observes a corrupted loss vector ℓ̃(t) = ℓ(t) + c̃
(t)
y for ℓ(t) = A⊤x (t);

4. x-player gains a payoff of ⟨x(t),g (t)⟩
or ⟨x(t),g̃ (t)⟩ and y -player incurs a loss of

⟨y (t),ℓ(t)⟩
or ⟨y (t),ℓ̃(t)⟩
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(t)
y ;

3. (corruption of utilities)

x-player observes a corrupted reward vector g̃ (t) = g (t) + c̃
(t)
x for g (t) = Ay (t),

y -player observes a corrupted loss vector ℓ̃(t) = ℓ(t) + c̃
(t)
y for ℓ(t) = A⊤x (t);

4. x-player gains a payoff of ⟨x(t),g (t)⟩
or ⟨x(t),g̃ (t)⟩ and y -player incurs a loss of

⟨y (t),ℓ(t)⟩
or ⟨y (t),ℓ̃(t)⟩



7 / 14
Corrupted regime in two-player zero-sum games

We investigate a scenario where the observed utilities may also be corrupted.

At each round t = 1, . . . ,T :

1. A prescribed algorithm suggests strategies x̂ (t) ∈ ∆mx and ŷ (t) ∈ ∆my ;
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2. x-player selects a strategy x (t) ← x̂ (t) + ĉ
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or ⟨x(t),g̃ (t)⟩ and y -player incurs a loss of

⟨y (t),ℓ(t)⟩
or ⟨y (t),ℓ̃(t)⟩

• corrupted regime with no corruptions = honest regime

• corrupted regime with arbitrary C̃y = adversarial scenario for x-player
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Our algorithm: Optimistic Hedge with adaptive learning rate

Syrgkanis et al. (2015): Optimistic Hedge with constant learning rate
(fast rates in honest regime)

x (t)(i) ∝ exp

(
ηx

(
t−1∑
s=1

gs(i) + gt−1(i)

))
, ηx ≃ 1 , ∀i ∈ [mx ]
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Syrgkanis et al. (2015): Optimistic Hedge with constant learning rate
(fast rates in honest regime)

x (t)(i) ∝ exp

(
ηx

(
t−1∑
s=1

gs(i) + gt−1(i)

))
, ηx ≃ 1 , ∀i ∈ [mx ]

Ours: Optimistic Hedge with adaptive learning rate

x (t)(i) ∝ exp

(
η
(t)
x

(
t−1∑
s=1

g̃s(i) + g̃t−1(i)

))
, η

(t)
x =

√
log+(mx)/2

log+(mx)+
∑t−1

s=1∥g̃ (s) − g̃ (s−1)∥2∞
with log+(z) = max{log z , 4}.

This is a very standard choice of learning rate (recall AdaGrad), but adjusted to satisfy

η
(t)
x ≤ 1/

√
2.
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Main result (1): Regret upper bound in the corrupted regime

Cumulative corruption of strategies and utilities

• Ĉx =
∑T

t=1∥ĉ
(t)
x ∥1, C̃x =

∑T
t=1∥c̃

(t)
x ∥∞, and Cx = Ĉx + 2C̃x .

• Ĉy =
∑T

t=1∥ĉ
(t)
y ∥1, C̃y =

∑T
t=1∥c̃

(t)
y ∥∞, and Cy = Ĉy + 2C̃y .

Regret upper bounds of the x-player:

Honest regime Corrupted regime

Syrgkanis et al. (2015) log(mxmy ) log(mxmy ) +
√

T logmx + Cx

Ours
√

log(mxmy ) logmx min
{√

(log(mxmy ) + Cx + Cy ) logmx ,
√
T logmx

}
+Cx

The bound RegTx ,g ≲
√
Ĉy + Ĉx in the corrupted regime ...

• smoothly interpolates between the Õ(1) regret in the honest regime and the Õ(
√
T )

regret in the adversarial scenario (noting Cy ∈ [0, 3T ]).
• incentivizes players to follow the given algorithm:

▶ any deviation by an opponent incurs only a square-root penalty
√

Ĉy ,

▶ whereas a deviation by a player from the given algorithm incurs a linear penalty Ĉx .
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• Ĉy =
∑T

t=1∥ĉ
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▶ whereas a deviation by a player from the given algorithm incurs a linear penalty Ĉx .
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(t)
y ∥1, C̃y =

∑T
t=1∥c̃

(t)
y ∥∞, and Cy = Ĉy + 2C̃y .
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Ĉy + Ĉx in the corrupted regime ...
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Main result (2): Lower bounds

1. If corruption occurs only in x-player’s observed utilities (i.e., Ĉx = Ĉy = C̃y = 0),

RegTx ,g̃ := maxx∗∈∆mx

{∑T
t=1⟨x∗, g̃ (t)⟩ −

∑T
t=1⟨x (t), g̃ (t)⟩

}
= O(

√
C̃x logmx) ,

Theorem: For any learning dynamics, there exists a corrupted game with∑T
t=1∥g (t) − g̃ (t)∥∞ ≤ C̃x such that RegTx ,g̃ = Ω

(√
C̃x logmx

)
.

2. player’s own strategy deviation:

If corruption occurs only in x-player’s strategies, RegTx ,g = Õ(Ĉx) .

Theorem: ∀ dynamics, ∃ game w/
∑T

t=1∥x (t) − x̂ (t)∥1 ≤ Ĉx such that

RegTx ,g = Ω(Ĉx).
3. opponent’s strategy deviation:

If corruption occurs only in y -player’s strategies, RegTx̂ ,g= Õ
(√

Ĉy

)
,RegTŷ ,ℓ= Õ(

√
Ĉy ).

Theorem: ∀ dynamics, ∃ game w/
∑T

t=1∥y (t) − ŷ (t)∥1 ≤ Ĉy such that

max
{
RegTx̂ ,g ,Reg

T
ŷ ,ℓ

}
= Ω

(√
Ĉy

)
.
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ŷ ,ℓ

}
= Ω

(√
Ĉy
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Theorem: ∀ dynamics, ∃ game w/
∑T

t=1∥x (t) − x̂ (t)∥1 ≤ Ĉx such that
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Main result (3):
Extension to corrupted multiplayer general-sum games

Swap regret upper bounds of player i in multiplayer general-sum games with n-players
and m-actions after T rounds

Ĉi ∈ [0, 2T ]: the cumulative amount of corruption in strategies for player i , Ŝ =
∑

i∈[n] Ĉi

References Honest Corrupted (if no corruption in observed utilities)

Chen and Peng (2020)
√
n(m logm)3/4T 1/4

√
mT logm + Ĉi

Anagnostides et al. (2022) nm5/2 logT nm5/2 logT +
√

mT logm + Ĉi
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√
mT logm + Ĉi

Anagnostides et al. (2022) nm5/2 logT nm5/2 logT +
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Ours nm5/2 logT nm5/2 logT+min
{√

Ŝ(nm2+m5/2) logT ,m
√
T logT

}
+Ĉi

Key techniques: stability of stationary distributions of Markov chains determined by
optimistic FTRL with adaptive learning rate
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Summary

Our contributions

• Established a framework of corrupted games, in which each player may deviate
from a prescribed algorithm

• Derived regret upper and lower bounds in two-player zero-sum and multiplayer
general-sum games:

Roughly, RegTx ,g = Θ̃(
√
Cy + Cx) , SwapRegTxi ,ui = Θ̃(

√∑
j ̸=i Cj + Ci ) .

Many directions for future work

• extensive-form games, Markov games, ...

• another regret measure such as Φ-regret

• last-iterate convergence
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