土屋 平 / Taira Tsuchiya
English version is here.
-
→ 最新の News (English page)
-
Sep 21, 2021: JST ACT-X 「数理・情報のフロンティア」に研究課題が採択されました.[link]
-
May 28, 2021: 論文 "Semi-Supervised Ordinal Regression Based on Empirical Risk Minimization" が Neural Computation に採択されました.
-
Apr 1, 2021: 指導教員の転任に伴い,京都大学へ転学しました.
-
Jan 8, 2021: IBIS2020で優秀発表賞を受賞しました. [link]
-
Dec 22, 2020: Toshiba Symposium 2020 で部分観測問題の研究について講演します.スライドはこちら.
-
Nov 25, 2020: IBIS2020 で口頭発表を行います.
-
Sep 26, 2020: 論文 "Analysis and Design of Thompson Sampling for Stochastic Partial Monitoring" が NeurIPS2020 に採択されました.
プレプリントはこちら.
-
Taira Tsuchiya, Shinji Ito, and Junya Honda,
"Stability-penalty-adaptive Follow-the-regularized-leader: Sparsity, Game-dependency, and Best-of-both-worlds,"
arXiv:2305.17301, 2023.
[arXiv]
-
Taira Tsuchiya, Shinji Ito, and Junya Honda,
"Further Adaptive Best-of-Both-Worlds Algorithm for Combinatorial Semi-Bandits,"
In Proceedings of 26th International Conference on Artificial Intelligence and Statistics (AISTATS 2023), pp.8117–8144, 2023.
(Presented at International Conference on Artificial Intelligence and Statistics (AISTATS 2023), Valencia, Spain, Apr. 25–Apr. 28, 2023)
[proceeding]
[poster]
-
Junya Honda, Shinji Ito, and Taira Tsuchiya,
"Follow-the-Perturbed-Leader Achieves Best-of-Both-Worlds for Bandit Problems,"
In Proceedings of The 34th International Conference on Algorithmic Learning Theory (ALT 2023), pp.726–754, 2023.
(Presented at International Conference on Algorithmic Learning Theory (ALT 2023), Singapore, Feb. 20–23, 2023)
[proceeding]
-
Taira Tsuchiya, Shinji Ito, and Junya Honda,
"Best-of-Both-Worlds Algorithms for Partial Monitoring,"
In Proceedings of The 34th International Conference on Algorithmic Learning Theory (ALT 2023), pp.1484–1515, 2023.
(Presented at International Conference on Algorithmic Learning Theory (ALT 2023), Singapore, Feb. 20–23, 2023)
[arXiv]
[proceeding]
[slide]
-
Shinji Ito, Taira Tsuchiya, and Junya Honda,
"Nearly Optimal Best-of-Both-Worlds Algorithms for Online Learning with Feedback Graphs,"
In Advances in Neural Information Processing Systems 35 (NeurIPS 2022), pp.28631–28643, 2022.
(Presented at Neural Information Processing Systems (NeurIPS2022), New Orleans, Louisiana, USA, Nov. 28–Dec. 9, 2022)
[proceeding]
[arXiv]
-
Junpei Komiyama, Taira Tsuchiya, and Junya Honda,
"Minimax Optimal Algorithms for Fixed-Budget Best Arm Identification,"
In Advances in Neural Information Processing Systems 35 (NeurIPS 2022), pp.10393–10404, 2022.
(Presented at Neural Information Processing Systems (NeurIPS2022), New Orleans, Louisiana, USA, Nov. 28–Dec. 9, 2022)
[proceeding]
[arXiv]
-
Shinji Ito, Taira Tsuchiya, and Junya Honda,
"Adversarially Robust Multi-Armed Bandit Algorithm with Variance-Dependent Regret Bounds,"
In Proceedings of Thirty Fifth Conference on Learning Theory (COLT 2022), pp.1421–1422, 2022.
(Presented at Conference on Learning Theory (COLT 2022), London, UK, July 2–5, 2022)
[proceeding (extended abstract)]
[full paper on arXiv]
[slide]
-
Taira Tsuchiya, Junya Honda, and Masashi Sugiyama,
"Analysis and Design of Thompson Sampling for Stochastic Partial Monitoring,"
In Advances in Neural Information Processing Systems 33 (NeurIPS 2020), pp.8861–8871, 2020.
(Presented at Neural Information Processing Systems (NeurIPS2020), online, Dec. 6–12, 2020)
[proceeding]
[full paper (pdf)]
[arXiv]
[poster]
-
Taira Tsuchiya, Naohiro Tawara, Tetsuji Ogawa, and Tetsunori Kobayashi,
"Speaker Invariant Feature Extraction for Zero-Resource Languages with Adversarial Learning,"
In Proceedings of 2018 IEEE International Conference on Acoustic, Speech, and Signal Processing (ICASSP 2018), pp.2381–2385, 2018.
(Presented at International Conference on Acoustic, Speech, and Signal Processing (ICASSP 2018), Calgary, Canada, Apr. 15–20, 2018)
[preprint]
[paper]
-
Taira Tsuchiya, Nontawat Charoenphakdee, Issei Sato, and Masashi Sugiyama,
"Semi-Supervised Ordinal Regression Based on Empirical Risk Minimization,"
Neural Computation, 33(12):3361-3412, 2021.
[arXiv]
[paper]
-
本多 淳也,伊藤伸志,土屋 平,
"バンディット問題における Follow-The-Perturbated-Leader 方策の確率的・ 敵対的最適性について"
In Proceedings of Information-Based Induction Sciences and Machine Learning Workshop, vol.xxx, no.xx, pp.xxx–xxx, Dec 2022.
-
土屋 平,
"部分観測問題における Best-of-Both-Worlds 方策"
数理・情報系研究集会 @ 東京工業大学, Dec. 15, 2022.
-
土屋 平,伊藤伸志,本多 淳也,
"バンディット問題における Best-of-Both-Worlds 方策の進展:構造的バンディットと分散依存リグレット,"
Presented at 25th Information-Based Induction Sciences Workshop (IBIS 2022), Nov. 20–23, 2022.
学生最優秀プレゼンテーション賞を受賞 [link]
-
小宮山純平,土屋 平,本多 淳也,
"固定時間最適腕識別におけるミニマックス最適アルゴリズム,"
Presented at 25th Information-Based Induction Sciences Workshop (IBIS 2022), Nov. 20–23, 2022.
-
Taira Tsuchiya,
"Towards Practical Algorithms for Online Decision-Making,"
Seminar at INRIA Lille Scool group, July 8, 2022.
[slide]
-
Junta Fujinaga, Taira Tsuchiya, and Junya Honda,
"組合せバンディット問題におけるInformation Directed SamplingのDC緩和について,"
In Proceedings of Information-Based Induction Sciences and Machine Learning Workshop, vol.122, no.90, pp.129–136, June 2022.
-
土屋 平,
"部分観測問題におけるThompson抽出,"
東芝研究開発センターシンポジウム2020 (online), Dec. 22, 2020.
[slide]
-
土屋 平,本多 淳也,杉山 将,
"部分観測問題におけるトンプソン抽出アルゴリズムの設計とリグレット解析,"
Presented at 23rd Information-Based Induction Sciences Workshop (IBIS 2020), Nov. 23–26, 2020.
優秀発表賞を受賞 [link]
[slide]
-
土屋 平,本多 淳也,杉山 将,
"経験リスク最小化による半教師付き順序回帰,"
Presented at 22nd Information-Based Induction Sciences Workshop (IBIS 2019), Nov. 20–23, 2019.
-
Taira Tsuchiya, Tomoharu Iwata, and Tetsuji Ogawa,
"Transformed Multiple Matrix Factorization: Towards Utilizing Heterogeneous Auxiliary Information,"
In Proceedings of Information-Based Induction Sciences and Machine Learning Workshop, vol.117, no.475, pp.41–48, March 2018.
-
Naohiro Tawara, Taira Tsuchiya, Tetsuji Ogawa, and Tetsunori Kobayashi,
"Speaker Feature Extraction using Adversarial Training,"
In Proceedings of 2018 Spring Meeting of Acoustic Society of Japan (ASJ 2018), pp.141–144, March 2018.
-
Taira Tsuchiya, Naohiro Tawara, Tetsuji Ogawa, and Tetsunori Kobayashi,
"Adversarial Multi-Task Learning for Extracting Speaker Invariant Feature for Zero-Resource Languages,"
In Proceedings of 2018 Spring Meeting of Acoustic Society of Japan (ASJ 2018), pp.9–12, March 2018.
- ACT-X「数理・情報のフロンティア」,JST [link]
- 日本学術振興会特別研究員 (DC1),JSPS [link]
- AIPチャレンジプログラム,JST (Aug. 2019 – Mar. 2020)
-
学生最優秀プレゼンテーション賞,IBIS2022,2022
[link]
-
優秀発表賞,IBIS2020,2020
[link]
- Travel Award, NeurIPS 2020
- 東京大学トヨタ・ドワンゴ高度人工知能人材奨学金 (Apr. 2020 – Mar. 2021)
- 東京大学トヨタ・ドワンゴ高度人工知能人材奨学金 (Apr. 2019 – Mar. 2020)
- JEES・ソフトバンクAI人材育成奨学金 (Apr. 2019 – Mar. 2020)
- 学科賞,早稲田大学, 2018
- mail: scse.taira [at] gmail.com